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Abstract:

Cryptanalysis is essential for evaluating the robustness of modern encryption
algorithms such as the Advanced Encryption Standard (AES) against various attacks.
However, traditional cryptanalysis methods are often time-consuming, require deep
domain expertise, and struggle to scale effectively when analysing high-dimensional
data such as cipher texts and side-channel emissions. Moreover, the lack of
standardized analysis techniques poses challenges in identifying subtle
vulnerabilities and anomalies within AES implementations. To address these
limitations, this study proposes a novel cryptanalysis framework based on transfer
learning, which leverages pre-trained deep learning models from diverse domains to
automatically extract and analyse meaningful features from side-channel data and
AES-related cryptographic elements. This Transfer Learning-based Cryptanalysis
Framework (TLCF) significantly reduces manual feature engineering and improves
the detection of information leakage, structural anomalies, and potential attack
vectors in AES systems. While steganography and cryptanalysis target distinct threat
surfaces hidden communication and key recovery respectively both benefit from
transfer learning’s ability to extract robust, transferable features from complex input
domains. This unified approach enables the application of deep feature learning
across heterogeneous security tasks. Furthermore, knowledge distilled from related
ciphers such as DES and Serpent is incorporated to enhance generalization and
robustness across different cryptographic settings. Experimental evaluations
demonstrate that the proposed approach achieves high accuracy in vulnerability
detection and outperforms traditional methods, especially when analysing the impact
of fault injections on AES implementations. By integrating transfer learning into the
cryptanalysis pipeline, this work advances the automation, efficiency, and precision
of evaluating encryption schemes, contributing to a deeper understanding of
cryptographic security.
Keywords: Cryptanalysis, Transfer Learning, Side-Channel Analysis,
Steganography Detection, AES Encryption, Symbolic Cipher text Modelling.

1. Introduction

Cryptanalysis is a critical field that aims to identify weaknesses and
vulnerabilities in cryptographic systems. Before, cryptanalysts depended
mostly on their mathematical skills and knowledge of the field. Yet,
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improvements in deep learning recently, mainly with transfer learning, have
provided fresh chances to boost both how accurate and efficient
cryptanalytic methods are. This work examines using transfer learning in
cryptanalysis, creating new methods that rely on deep machine learning to
cope with analysing cryptographic faster and more accurately [1]. Major
topics discussed are feature extraction, analysis of side channels and
spotting abnormalities. Experiments are performed wusing many
cryptographic tools to compare and assess the methods suggested in the
paper with those used in cryptanalysis. Researchers found that by using
transfer learning, they can both save time and increase the accuracy of their
attack, underlining its possible benefits for current cryptanalysts.
Many researchers examine transfer learning in areas such as computer
vision and natural language processing and it helps models exchange
knowledge gathered in one field to do better in similar fields [2]. Instead of
using labelled datasets for specific tasks, the pre-trained models from
transfer learning help train a new model by providing insights from vast,
pre-processed data. Transfer learning has been successful outside
cryptography, but its use in cryptanalysis is still not well studied. By
detailing its underlying ideas and showing how it helps on a practical level,
this paper helps close this gap in cryptographic vulnerability assessment [3].
This study looks at using transfer learning in cryptanalysis, mainly to
enhance finding and identifying weaknesses in cryptography. We use a
transfer learning model with a minimal amount of data, but show it results
in a much higher detection success rate than standard methods. Because
pre-trained deep neural networks were trained on large image classification
and signal processing datasets, we use them to extract useful information
from cipher texts and various cryptographic objects. They help to uncover
secrets that are hard to detect using either conventional statistics or manual
work. Our approach helps by enabling us to recognize very small leaks
caused by changes in power usage or execution time which are connected to
cryptographic keys. Because of transfer learning, the use of side-channel
characteristics enables the model to work well in many situations without
much particular data. Moreover, we teach machine learning classifiers using
tidy data that contains genuine AES communication traffic to find out what
normal behaviour is [4]. Because of the baseline, the system is able to spot
unusual behaviour in cryptography which helps with strong anomaly
detection and finding implementation flaws or breaches. This process allows
the models to be well-suited for important research in cryptographic
applications.
To improve model performance, we employ a systematic grid search strategy
to optimize key hyper parameters. The major contributions of this study are
as follows:

e We utilize transfer learning with pre-trained models to analyse AES-

related data, including cipher texts and side-channel emissions.
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Experimental results show a significant increase in detection
accuracy, even with limited data, confirming the capability of transfer
learning to extract meaningful features in cryptographic contexts.

e Our approach enables the identification of information leakage,
strengthens side-channel attacks, and supports anomaly detection in
AES implementations. By leveraging existing deep learning
architectures, we bypass manual feature engineering and instead use
learned representations to detect potential protocol flaws and unusual
cryptographic behaviour. The models are trained and validated on
actual AES traffic and side-channel traces, ensuring relevance to
practical attack scenarios.

e A comprehensive grid search is conducted across critical hyper
parameters such as learning rate, number of hidden units, optimizer
type, activation functions, and dropout rate. This optimization process
results in improved model accuracy and reduced test error. The
effectiveness of the proposed framework is validated through extensive
evaluation using standard cryptographic classification metrics,
demonstrating its utility in modern AES cryptanalysis.

The paper is structured as follows to give a thorough grasp of our work: The
difficulties and reasons for using transfer learning in cryptography are
presented in Chapter 1. The limits of conventional approaches and related
works are covered in Chapter 2. The suggested methodology, including the
methods for feature extraction, anomaly detection, and side-channel attack
amplification, is described in full in Chapter 3. The experimental setup and
results are shown in Chapter 4, after which the performance measures are
analyzed. Lastly, a discussion of the research's ramifications and future
directions wraps up Chapter 5.

2. Literature Survey

In recent years, scientists in neural cryptography have studied how
synchronizing neural networks can improve safe key sharing through public
networks. By deploying a complex-valued tree parity machine (CVTPM) in
their framework, strengthened both security and privacy, since only protocol
participants can exchange two group keys in one synchronized step and
prevent eavesdroppers from monitoring traffic [7]. ISACA Last year, released
a session key exchange protocol based on a Generative Adversarial Network
(GAN) that improves both the efficiency and security of synchronization.
Cryptanalysis is witnessing resurgence through deep learning and transfer
learning. Propose MIND Crypt, a deep residual network trained to
distinguish SPECK32/64 cipher texts. Leveraging transfer learning, they
reduce required training samples from millions to tens of thousands—
boosting attack efficiency substantially. Author explores topic modelling in
chosen-plaintext attacks [8]. By combining CNNs, GRUs, and LSTMs, their
framework predicts the “topic” of encrypted texts—achieving 80 % F1-score
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signalling novel directions for side-channel and metadata inference. On a
different front, Carlini et al. and colleagues tackle model extraction of neural
networks under a cryptanalytic lens. Their 2024 work demonstrates, via
polynomial-time methods, that DNN parameters can be fully recovered even
when only hard-label outputs are available raising concerns about model
secrecy.
Demonstrate a breakthrough in model security with their work on
polynomial-time extraction of DNN parameters from hard-label outputs [9].
By treating neural network weights as cryptographic secrets, they show that
even classification-only interfaces can be reversed efficiently. Building on
neural distinguishers, optimize deep differential-neural attacks using
inception modules and knowledge distillation. Their enhanced architecture
successfully attacks more rounds of Speck32/64 and Simon32/64 with
improved efficiency.
Contributed two methods, Spider Monkey Optimization and
Gravitational Search that help bridge neurons quickly and make
neural key exchange protocols more reliable [10]. Synchronization was
analysed in neural key exchange protocols, where potential dangers
were tackled and new approaches were suggested to boost security
with deeper neural layers and better learning conventions. Finally,
introduce neural inspired integral cryptanalysis, where neural
networks guide the search for integral distinguishers on
SKINNY64/64. This approach enables key-recovery attacks with
greater rounds and fewer active bits than previous methods.
The latest developments in neural cryptography aim to boost the speed and
safety of key exchange protocols by making sure synchronization happens
quickly and that the system can withstand attacks [11]. Integrating
Recurrent Neural Networks (RNNs) and drive-response mechanisms now
makes it simpler and more secure to generate keys on the Industrial
Internet of Things (IIoT). This method uses polynomial control and Lyapunov
tests to make devices synchronous, allowing it to outperform original
synchronization techniques in speed and reliability. Chaos tuned neural
networks are another key tool that allow all partners in the communication
to share the same secret key at once [12]. By using the unexpected nature of
chaotic systems, this method enhances security and has resulted in fewer
steps needed for synchronized communication. While dealing with quantum
channel problems in cryptography, scientists have relied on artificial neural
networks to make sure messages from one computer to another are correct.
By exploring mutual learning, researchers have determined the best
arrangements and repetitions needed for secure and efficient
synchronization in quantum key distribution systems.
In addition, building complex-valued neural networks such as the CVTPM,
makes it possible for multiple group keys to be changed together during a
single synchronization step. Besides enhancing security, this development

www.journal-administration.com



Journal of Research Administration Volume 8 Number 4

helps trim down key exchange time which is essential for real-time usage
[13]. Also, by applying GANs, the methods used in neural key exchange
protocols now produce better quality random inputs and can synchronize
more quickly. It helps the system safely resist usual risks, for instance,
man-in-the-middle attacks. All of these studies point out the potential for
neural networks to transform the way cryptographic key exchange takes
place. Focusing on cutting synchronization delays and strengthening safety
allows these methods to support improved and reliable cryptography for IoT,
quantum networks and securely shared data.

3. Proposed Advanced Optimal Approach Model

The research seeks to improve cryptanalysis using transfer learning, to
avoid the lengthy and complex drawbacks of previous methods. It allows us
to use existing models and find hidden weaknesses in the patterns found in
ciphertext and side channels. This study presents a transfer learning-based
cryptanalysis framework designed to recover AES key bytes from side-
channel and ciphertext data. We use the ASCAD dataset, which consists of
200,000 power traces collected from a masked AES implementation on an 8-
bit Atmel microcontroller. Each trace contains 700 aligned time samples
corresponding to a single AES encryption, along with metadata including the
plaintext, key, and masking information. We target the recovery of Key Byte
3, a common benchmark in side-channel research. The dataset is split into
100,000 training traces, 10,000 validation traces, and 50,000 test traces.
The model of proposed transfer learning is illustrated in Figure 3.1.(a)

We employ ResNet-18 (pretrained on ImageNet) to analyse side-channel
traces treated as 1D signals. The network is modified by replacing the final
classification layer with a fully connected layer of 256 neurons followed by
Soft Max activation, corresponding to the 256 possible AES byte values. A
grid search is used to tune key hyper parameters, including learning rate
(1e-3), dropout (0.3), and batch size (128), using Top-1 accuracy and F1-
score on the validation set as selection metrics. To address domain shift
from natural images to trace signals, we freeze the early convolution layers
initially, then gradually unfreeze them during training. For symbolic
ciphertext analysis, AES-encrypted outputs were represented as
hexadecimal strings. Each ciphertext was tokenized at the byte level (2
hexadecimal characters per token), allowing each byte to be mapped to an
embedding vector during input to the BERT model. The dataset consists of
[N] ciphertext samples generated using a fixed-key AES encryption scheme
applied to random plaintext inputs. This dataset was synthetically generated
using PyCryptodome, ensuring control over label classes such as key
leakage, timing, or structure variation. The primary task is binary
classification, where the model predicts whether a given ciphertext was
generated using a standard implementation or a modified one that
potentially leaks information. Preprocessing included segmenting each
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ciphertext to fixed-length sequences (e.g., 16 bytes for AES-128), with
padding applied as needed. The final [CLS] token output is passed through a
dropout and dense layer for classification. We fine-tune only the top
transformer layers with a smaller learning rate (1e-5) and batch size (32) to
maintain generalization.

All models were fine-tuned using the Adam optimizer, with learning rates
ranging from le-3 to le-5, selected via grid search. Each model was trained
for 20 to 50 epochs, depending on convergence behaviour, with early
stopping based on validation loss and accuracy. A batch size of 128 was
used for CNNs, while 32 was used for BERT-based models due to memory
constraints. To manage domain shift between pre-trained source domains
(e.g., ImageNet for ResNet, language modelling for BERT) and the target
cryptographic domain, we applied layer freezing during the initial training
phases, followed by gradual unfreezing and fine-tuning. This two-phase
approach allowed the models to retain generalizable features while adapting
to cryptographic structures, such as AES leakage patterns and ciphertext
sequences.

Task-
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Table 3 Model Configurations and Domain Adaptation Strategies for
Transfer Learning
As shown in Table 3 each model was initialized with pretrained weights and
extended with task-specific layers. For cryptanalysis, ResNet-18 processed
time-series signal traces, while BERT-Base handled byte sequences. For
steganalysis, VGG-16 and VGG-19 extracted visual features from embedded

images.

3.1 — Overview of the Transfer Learning Framework

Figure 3.1(a) Model for Transfer Learning
The suggested model outperforms the baseline CNN in terms of training loss
over epochs, as explained in Figure 3.1(a) suggesting improved convergence
during optimisation.
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They are particularly useful because, as flexible architecture, Transformers
scale well and can process a range of time-series leakage and ciphertext
sequences quickly. Their use of self-attention allows them to consider
multiple inputs together, supporting their application in many different
types of cryptography [17]. Thanks to these models, it becomes possible to
use them in transfer learning, keeping the common cryptographic feature
understanding found in different training data.

VGG-16
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Figure 3.1 (b): Architecture VGG-16

Additionally, Figure 3.1(b) validates the efficacy of the selected hyper
parameters by demonstrating a steady improvement in classification
accuracy across the training period.

During fine-tuning, the shallower layers are often frozen, to maintain generic
visual properties, whilst the deeper layers are re-trained, to accommodate
task-specific information, such as learning encrypted text patterns or
learning decoding rules. The simplicity of VGG-16, its suitability to standard
transfer learning procedures and its demonstrated success in a wide range
of vision tasks make it a natural choice to adopted in cryptanalysis
frameworks based on deep learning, especially when the task demands
small and efficient representations.

Transfer learning gives us a useful and promising strategy to help improve
cryptanalysis by relying on what has been learned and used before. With
more research, we could increase how fast and correctly cryptographic
systems are tested, resulting in stronger ways to safeguard information. But,
using transfer learning for cryptanalysis has its own specific problems.
Since cryptographic systems are different from most, it can be hard for them
to match a source task suited for pre-training with a target task of
cryptanalysis. The distribution of data which features are used and how
statistical behaviour changes can impact the success of knowledge transfer
[18]. For this reason, accurately analysing the mismatch is necessary, so
that the transfer learning method can be adjusted to perform better.

MeanSquaredError( M SE)

Z“;r %)
(3.1)

o The size of the dataset, denoted by n, is described by the
notation.

J y is the correct label value.
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o y the model's forecast value is denoted by the symbol

The Equation 3.1 defines the Mean Squared Error (MSE) loss, which is used
to train the model.In order to encourage the model to generate outputs that
are more closely aligned with the actual key byte class, equation (3.1)
computes the average squared error between the model's predicted values, y
i, and the true labels, vy i.

Unified Security Model
(Transfer Learning )

Cryptanalysis Steganogra phy
(AES, ASCAD) Detection

Signal Traces/ Stego [ Cover
Cipher texts Images

|

Key Recovery
Side — Channel
Eval

Figure 3.1 (c): Dual-Path Transfer Learning Framework for Unified
Cryptanalysis and Steganalysis

Figure 3.1 (c¢) Our framework unifies cryptanalysis and
steganalysis tasks using transfer learning. It summarizes the dual-path
design, where cryptographic signals (e.g., side-channel traces and
ciphertexts) are analyzed using ResNet; and BERT, while steganographic
image features are extracted using VGG16 and evaluated across varying
payloads.

3.1.1 Model Training and Loss Evaluation
Steps followed for cryptanalysis:
1. Selection of Pre-trained Models: Begin by choosing a pre-trained
model that has been trained on tasks relevant to your objective, such
as sequence analysis or anomaly detection. This model will have
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already learned important patterns or features from extensive and
varied datasets, which can be valuable for your specific security task.

2. Use of Initialization Data: In cryptographic systems, data involved in
the initialization or key exchange processes is critical. This data can
be analysed and processed using the pre-trained model to extract
useful insights or detect irregularities that might compromise
security.

3. Fine-Tuning the Model: To tailor the pre-trained model to your
cryptographic security needs, adjust its parameters while preserving
the core knowledge it gained during initial training. This fine-tuning
process enables the model to better recognize relevant characteristics
in your specific data, enhancing its ability to secure the system. The
forward pass during fine-tuning allows the model to process the input
data and update its understanding based on the new context.

4. Output from the Pre-trained Model (Fine-Tuned Layers)
By following these steps, the transfer learning model can be effectively
adapted to support and strengthen the cryptographic protocol during its
sensitive initialization phase [19]. After extracting features from the
earlier layers, the output is passed through additional layers tailored to
the specific task
Zpreft(x) = fpreft(x; Qpre_ft) (3.1.1)
This equation defines theforward propagation through the frozen pretrained
layers of the model:
x is the input sample
fpreﬂ :Propagation in the pre-trained part of the model

(forward).

Dpre re:Updated parameters of the pre-trained layers after
fine-tuning.

Zpre_ft is the intermediate output after these layers.

This equation 3.1.1 represents the output Zpre rizfrom the frozen
(pre-fine-tuned) layers during forward propagation. Here,x is the input (e.g.,
signal trace or image), and Opre_rrare the fixed (non-trainable) weights of the
pre-trained model used for feature extraction.

5. Output from the New Task-Specific Layers
Znew(x) = fnew(Zpreft(x); Dnew) (3.1.2)
fnew: Forward pass of the new layers.
D,ew: Trainable parameters of these new layers.
Znew(x): Output of the task-specific transformation of the learned features.
The features are extracted off the pre-trained layers and then the result is
taken through other layers which are specific to the new task.
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6. Final Output of the Model
Ynew(x) = ffinal(Znew(x)) (3.1.3)
frinal :Final activation or decision layer to produce task-specific
predictions.
Ynew (%) :The predicted label or output for the new task.

7. Training Objective for Fine-Tuning:
Given a labelled dataset for the new task:
Dpew = {(xi, ¥} (3.1.4)
The training objective is defined using a loss function:

Lnew (¢new: Qpre_ft) (3- 1-5)

3.1.2 Validation Accuracy and Hyperparameter Tuning

To optimize model performance, we employed a grid search strategy to
systematically explore combinations of critical hyperparameters. The tuning
process was evaluated using wvalidation accuracy and Top-1 key byte
classification accuracy as the primary metrics. Grid search was chosen
due to its simplicity, exhaustive nature, and suitability for our bounded
hyper parameter space.

Hyperparameter Values Explored

Learning Rate le-1, 1le-2, 1e-3, le-4

Adam, SGD,
Optimizer RMSpr
op

Batch Size 64, 128, 256

Dropout Rate 0.2,0.3,0.4, 0.5

Activation Function | ReLU, Leaky ReLU

32, 64, 128

(inmodi
Number of Filters fied
ResNet
layers)
Table 3.1.2 (a) Dual-Path Transfer Learning Framework for Unified
Cryptanalysis and Steganalysis
The hyper parameter search space utilised to maximise model performance
is described in Table 3.1.2(a). Multiple values for learning rate, optimiser,
batch size, dropout rate, activation functions, and number of filters were
searched in a grid. The optimal setup for cryptanalysis and steganography
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detection tasks was found after a thorough tuning procedure, with
performance evaluated using F1-score and Top-1 accuracy.
As shown in Table 3.1.2(a), we employed an exhaustive grid search to
determine the optimal hyperparameters. This tuning was evaluated using:

e Top-1 Accuracy

e F1-Score (Macro-Averaged)

Tuning Method
We performed an exhaustive grid search, training each hyperparameter
combination for 20 epochs on the training set. The evaluation was
conducted on a separate validation set using two primary metrics:

e Top-1 Accuracy: Measures the proportion of correct key byte

predictions.
e F1-Score (Macro-Averaged): Evaluates the balance between precision
and recall across all 256 AES key byte classes.

These metrics were chosen to ensure both accuracy and class-wise
consistency in model performance, given the multi-class nature of AES key
byte classification.
Final Selected Hyperparameters
Based on validation results, the following configuration achieved the best
performance:

e Learning Rate: le-3

e Optimizer: Adam

o Batch Size: 128

e Dropout Rate: 0.3

e Activation Function: ReLu

e Number of Filters: 64
This tuning strategy ensured that our model achieved high accuracy while
maintaining generalization and stability in cryptanalysis tasks.

Test Result

For this research, the datasets used are BOSSbase which is a commonly
accepted benchmark in steganography and steganalysis. BOSSbase offers
10,000 gray-scale images at 512x512 pixels, converted to 224x224 each
showing a different part of the natural environment. This dataset is well-
suited for analysing steganography and detection thanks to its extensive and
complex nature that matches actual image distributions. The current study
used BOSSbase images that had data hidden in them using 0.7 bits per
pixel, 0.4 bits per pixel and 0.2 bits per pixel [21]. The embedding payloads
of 0.7 bits per pixel (bpp) and 0.4 bpp represent higher levels of data
embedding, which introduce more noticeable perturbations in the cover
images. These modifications result in stronger statistical footprints, making
the steganographic patterns more detectable by machine learning models.
Embedding different patterns of hidden text shows the models how well they
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respond to different steganographic strengths. Thanks to BOSSbase, the
model’s accuracy, false positive rates and loss values can be understood and
assessed similarly to measurements in another research. Step one was to
normalize the images which helps improve results for training models. Next,
I resized the images to be compatible with the neural network’s input needs.
The models were tested and refined on one group of data from BOSSbase,
while a different group was used to check how well they would work in
practice [22]. Having selected BOSSbase for the dataset created a firm and
standard style for canvassing transfer learning in steganography detection.

Table 3.1.2 (b) Recall Scores for LSB Steganography Detection Across
Varying Payloads

The recall scores of the transfer learning model at various payload sizes (in
bits per pixel) for steganographic content detection are shown in this table.
The model's recall indicates how well it can recognise stego images. Recall
typically declines with decreasing payload, highlighting the difficulty of
identifying low-embedding stego signals. The outcomes demonstrate how
sensitive the model is to embedding strength.
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Table 3.1.2(c) F1-Scores for LSB Steganography Detection at Different
Payload Levels

The transfer learning model's F1-scores, which combine precision and recall,
are shown in Table 3.1.2 (c) for different payload levels. Larger payloads
(e.g., 1.0, 0.9 bpp) yield higher Fl-scores, suggesting that stronger
embedding signals function well in detecting buried data. Because of the
more subtle changes in the stego pictures, lower payloads result in
moderate-to-low F1-scores.

The study shows that a lower payload size in stego images can negatively
affect how easily they are detected. This drop in performance is attributed to
the model’s lack of exposure to highly randomized and low-signal stego
images during training. As a result, the model often has trouble discovering
hidden details when imagery has lower embedding rates. The observations
show that as the amount of data in the payload lowers, the detection
accuracy decreases significantly with the transfer learning model only
slightly decreasing near the 0.5 bps boundary [23]. However, the common
approach achieves a success rate of 50% on data from both training and
testing, showing it fails to strong claim about its results in low-payload
situations. Applying transfer learning to the most difficult category of
embedded payload images boosts important results such as accuracy, recall
and F1 score for telling cover (original) images from stego (embedded)
images. With these metrics, we can see how well the model knows the
difference between objects and scenes. Precision of 0.0 shows the percentage
of right cover image predictions and a precision of 1.0 means the percentage
of right stego image predictions. Similarly, recall measures how good the
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model is at finding covers from each class—no cover images were found
correctly if recall is O, but all were located if recall is 1.

Researchers chose VGG16 as the backbone for transfer learning because it
performs well in image classification and can pick out several levels of
features in the input images. The rightness of model predictions was
measured using commonly used scores such as accuracy, precision, recall
and the F1 score. Combined, these metrics capture the overall strength of
the model, its skill at both detecting and missing hidden images and its
resistance to problems caused by differences in class numbers, all essential
criteria for judging performance in hidden image detection [24]. If these
familiar algorithms are used, the performance of the model can be compared
properly to similar methods in the field.

If a model has a recall of 0, it indicates it was unable to properly anticipate
any of the test cover photos. If a model has a recall of 1, it perfectly predicts
100% of the test stego images. — The results of the proposed algorithm's
recall are shown in the table.

Table 3.1.2 (d) Precision comparison with varying embedding payloads

Payload Precision Average/total
0.0 1.0 75000
LSB 0.99 0.99 0.99
1.0 0.98 0.86 0.92
0.9 0.96 0.80 0.88
0.8 0.94 0.76 0.85
0.7 0.94 0.75 0.84
0.6 0.93 0.72 0.82
0.5 0.91 0.70 0.80
0.4 0.90 0.68 0.79
0.3 0.89 0.66 0.77
0.2 0.86 0.65 0.75
0.1 0.78 0.62 0.70

Precision scores, which show the percentage of projected stego pictures that
are truly correct, are shown in this table for different payload levels. When
the payload is reduced, the model shows a progressive drop in precision,
indicating a higher number of false positives at lower embedding densities.

Table 3.1.2 (e) CNN baseline precision (non-transfer learning)

Payload Precision Average/total
0.0 1.0 75000
LSB 0.92 0.86 0.89
1.0 0.87 0.75 0.81
0.9 0.85 0.68 0.76
0.8 0.80 0.72 0.76
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0.7 0.67 0.62 0.64
0.6 0.72 0.69 0.70
0.5 0.74 0.60 0.67
0.4 0.66 0.58 0.79
0.3 0.61 0.54 0.62
0.2 0.59 0.52 0.55
0.1 0.52 0.52 0.52

The precise performance of a baseline CNN model without transfer learning
is contrasted in Table 3.1.2 (e). The benefits of using pretrained feature
extractors for steganography detection are demonstrated by the consistently
lower precision scores across all payload levels when compared to the
transfer learning model.

Table3.1.2 (f) Recall scores using the proposed transfer learning
framework.

Payload Recall Average/total

0.0 1.0 75000
LSB 1.0 1.0 0.99
1.0 0.86 0.98 0.92
0.9 0.83 0.95 0.88
0.8 0.79 0.92 0.85
0.7 0.78 0.92 0.84
0.6 0.62 0.92 0.82
0.5 0.58 0.90 0.80
0.4 0.46 0.88 0.79
0.3 0.43 0.88 0.77
0.2 0.42 0.85 0.75
0.1 0.38 0.82 0.70

Recall results for the suggested transfer learning model across various
payloads are shown in this table. It illustrates how sensitive the model is to
stego image detection, particularly at greater payloads. The transfer learning
method still performs noticeably better than the baseline model, despite
performance declining at lower embedding rates, confirming its efficacy in
delicate steganographic contexts.

Pseudocode: Advanced Optimal Model For Aes Cryptanalysis
Algorithm: AES_Cryptanalysis_Transfer Learning Model

Input: Side-channel trace dataset D (e.g., ASCAD)
Output: Trained model M for AES key byte prediction
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1. Preprocess_Input(D)
a. Compress traces to fixed format (e.g., 0.1 bpp equivalent)
b. Normalize inputs (zero-mean, unit-variance)

2. Initialize_Model ()
a. Load pre-trained model backbone (e.g., VGG19 or ResNet)
b. Freeze early layers (retain low-level features)
c. Add task-specific layers:
- Fully connected layer with 256 outputs
- SoftMax activation
d. Initialize added layers (e.g., Xavier initialization)

3. Train Model(D)
for epoch = 1 to N do
Shuffle D and divide into mini-batches {Bi, B, ..., B_k}
for each mini-batch B in D do
Forward pass:
features < Backbone(B)
predictions < Task_Specific_Layers(features)
Compute loss L (e.g., CrossEntropy(predictions, labels))
Backward pass:
Compute gradients of L w.r.t. trainable parameters
Update parameters using optimizer (e.g., Adam)
end for
end for

4. Post Training ()
a. Evaluate model M on validation set
b. Save or export M for deployment or further analysis

Return: Trained model M

We studied how well the models learned as we measured their results over
time. During all the epochs, the Training Loss to understand the difference
between a model’s predictions and the ground truth. The model that uses
transfer learning far outperformed the one trained using just regular data.
As a result, the team learned that the TL model produced predictions near
the true labels as training continued [25]. Parallel to that, Training Accuracy
recorded how many times each model predicted the classes correctly over
the course of their training. Transfer learning was able to gain a better
understanding of relevant points and use them to learn from the training
information. It appears that with the changes made, the TL model’s
predictions became much more accurate and trustworthy. All in all, these
findings show that including transfer learning helps models learn faster and
perform predictions better than training without it.
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4 N
Proposed Algorithm Loss Comparision

Loss

1 2 3 4 5 6 7 8 9 10
‘—TL—Train Loss 0.1 1 0.23]0.18 |0.26 | 0.27 | 0.34 | 0.32 | 0.42 | 0.59 | 0.68
‘ NoN-TL-Train Loss| 0.12 | 0.21 | 0.32 | 0.48 | 0.65 | 0.62 | 0.78 | 0.79 | 0.82 | 0.83

Payload Rate
o J

Figure 3.1.2 (a) the Loss Comparison of the Proposed Algorithm

Proposed Algorithm Accuracy Comparision

—~

Accuracy

‘—TL—TrainAccuracy 0.96 /092091 ,0.88/0.87|/0.84| 0.8 0.79|0.71| 0.67
‘ NoN-TL-Train Accuracy| 0.97 | 0.84| 0.8 | 0.75|0.64 | 0.57|0.54 | 0.51| 0.5 | 0.48

——TL-Train Accuracy NoN-TL-Train Accuracy

- %
Figure 3.1.2(b) the Accuracy Comparison of the Proposed Algorithm

After the training was complete, the model’s weights stayed the same in the
evaluation stage. Evaluating the model mainly looked at precision and its
loss through certain statistics. In each evaluation phase, the same amount
of input images was processed to maintain consistency. Math based the loss
on predictions that were off, not on a basic percentage. The datasets used
for the evaluation spanned a payload range from 1.0 bpp to 0.1 bpp.
Likewise, the best performance was seen for images with a higher payload,
leading to fewer loss values. Lower-payload images (0.1 bpp) were harder to
process and resulted in a higher amount of loss because the differences in
the stego images were nearly invisible [26]. At payload levels of 0.4 and 0.3
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bpp, the loss rate appeared to increase because the model’s prediction
confidence and accuracy were not stable.

The loss was found using the binary cross-entropy formula which is
appropriate for telling apart cover and stego images.

CrossEntropyLoss = — Y, y;log(y;) + (1 — y)log (1 —y;) (3.1.2)

i is a sample image. There are N pictures in the dataset. Input picture i has
a correct label of yi. The model's expected result for the i-th picture is
denoted by yi.

Cryptanalysis:

This study introduces a deep learning-based cryptanalysis framework that
leverages transfer learning with Res Net to perform side-channel analysis
(SCA) on AES cryptographic implementations. The core objective is to
recover AES key bytes by analysing power consumption traces using
advanced neural architectures. Specifically, we employ the ResNet-18
architecture, pre-trained on general signal classification tasks, and fine-tune
it using labelled side-channel traces from the ASCAD dataset. This approach
takes advantage of the representational power of deep convolution networks
while reducing the need for large training datasets and extensive manual
feature engineering.

The experiments are conducted using the widely adopted ASCAD (AES Side-
Channel Dataset), which provides 200,000 electromagnetic traces collected
from a masked AES implementation running on an 8-bit Atmel
microcontroller. Each trace is a sequence of 700 aligned time samples and is
associated with metadata including the corresponding key byte, plaintext,
and masking values. The dataset is structured to support practical SCA
research and evaluation. For this study, we focus on the recovery of Key
Byte 3, a standard target for benchmarking SCA models. We divide the
dataset into 100,000 traces for training, 10,000 for validation, and 50,000
for testing to ensure robust model evaluation.

The ResNet-18 model is adapted to handle 1D input traces by modifying the
initial convolution layers. The final dense layer is restructured to classify
256 possible values of an AES key byte. By fine-tuning this architecture on
the ASCAD dataset through back propagation, the model learns to detect
subtle variations in power traces that correspond to key-dependent
operations. The use of transfer learning not only accelerates convergence
but also improves accuracy, especially when dealing with noisy or limited
side-channel data. This method demonstrates the feasibility and
effectiveness of integrating modern deep learning techniques into practical
cryptanalysis workflows.

Experimental Setup

Component Details
Dataset ASCAD (aligned traces)
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Component Details
Key Byte Byte 3
Architecture Modified ResNet-18 (1D input)
Pretraining Signal classification (public waveform data)
Batch size 128
Optimizer Adam
Learning rate 0.001 (optimized via grid search)
Epochs 50
Loss function Categorical Cross-Entropy
Evaluation metric|Guessing Entropy, Accuracy, Rank of Correct Key

Table 3.1.2 (g) Configuration Details of the Transfer Learning Model for
AES Side-Channel Cryptanalysis

Overall Performance Evaluation Metrics

Using these metrics shows both the success of the model at predicting and
the average error displayed by its results. Table 3.7.1 and summarize the
results so that you can see how much better the model does. The model was
tested by running it on two different datasets created for this purpose. The
data sets used the four models we have mentioned, mainly to improve
forecasts of grain yield. By dividing the data in this way, it becomes easier to
find out how well the model generalizes. The hyperparameters for the
proposed and comparison models were adjusted via manual methods.
Paying close attention to choose the learning rate, the quantity of hidden
layers, the name of the optimizer, the kinds of activation functions used and
the rates of dropout [31]. The goals behind manual tuning were to raise the
model’s accuracy and at the same time maintain a low-test error in the
context of transfer learning. Details of the chosen hyperparameters and their
influence on training results are given in Table 3.7.1 which shows how the
models were fine-tuned for the particular assignment.

Accuracy Top-5 Average
Model
ode (Top-1) Accuracy Rank
CNN from Scratch 81.2% 92.4% 7.6
ResNet (T fi
esNet (Transfer | gg 7o, 96.8% 2.1
Learning)
T late Attack
emp ate. ttac 65.3% 3 34.0
(Baseline)

Table 3.1.2 (h) Performance Comparison of Cryptanalysis Models on
ASCAD Dataset
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Transfer learning via ResNet improves both key byte prediction accuracy
and reduces the average rank of the correct key, outperforming traditional
template attacks and CNNs trained from scratch.

Confusion Matrix (Sample Key Byte Prediction)

40

True Label
2

=20

-10

Predicted Label

Confusion Matrix for Key Byte Prediction

The confusion matrix provides a visual representation of the model’s
performance in predicting AES key byte values from side-channel traces.
Each row represents the actual key byte, while each column shows the
predicted value. A strong diagonal pattern indicates that the model correctly
identifies the key bytes with high accuracy. Few off-diagonal entries suggest
minimal misclassifications, typically occurring among neighbouring byte
values. This indicates that the model can reliably distinguish between
different key byte classes. The clear dominance of correct predictions
validates the effectiveness of using transfer learning with ResNet for AES
cryptanalysis through side-channel analysis in real-world scenarios.

Guessing Entropy vs Number of Traces

80 —e— ResNet (Transfer Learning)
CNN (Scratch)
—&— Template Attack
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Figure 3.1.2 (c) Guessing Entropy vs Number of Traces

Table 3.1.2(i)Overall Performance Evaluation Metrics

Model Training Dataset Validation Dataset
MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2
Transfer | 17 1 002 | 0.14 | 0.85 | 0.18 | 0.03 | 0.15 | 0.82
Learning
Deep | 34 | 0.00 | 0.37 | 063 | 025 | 0.06 | 0.37 | 0.74
Learning
Randoms3
0.63 | 062 | 0.83 | 021|062 | 0.61 | 0.73 | 0.37
Forest
SVRZ | 0.55 | 0.35 | 0.62 | 0.56 | 0.45 | 0.29 | 0.51 | 0.52

Performance Evaluation Metrics

M Deep Learning M Artificial Neural Network ™ Random Forest ®SVR

Figure 3.1.2 (d) Performance Evaluation Metrics

Accuracy and MAPE measure of the proposed deep
learning model

] Accuracy Measure B MAPE (%)

Figure 3.1.2 (e) Accuracy and MAPE measure of the proposed deep
lwqzearning
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4. Conclusion

Transfer learning using the Res Net architecture significantly enhances
cryptanalysis performance on AES side-channel data. By leveraging pre-
trained models and fine-tuning them on targeted electromagnetic trace
datasets, such as ASCAD, the proposed method achieves high key recovery
accuracy while minimizing the reliance on large, labelled datasets or manual
feature engineering. This approach enables efficient and scalable analysis of
cryptographic implementations and facilitates the development of automated
side-channel analysis (SCA) frameworks. The Res Net-based transfer
learning model captures complex, informative patterns in power traces that
are often difficult to extract using traditional or handcrafted techniques. As
a result, it not only improves attack success rates but also reduces the
number of traces required to recover cryptographic keys, making it well-
suited for real-world cryptanalysis scenarios. The transfer learning helps
detect stenographic images, with good results even for images containing
different sizes of payload and using a restricted amount of extra training
data. The outcome is that including transfer learning in detection improves
accuracy and reliability far more than training a model from zero. We saw
better results for stego images made with least significant bit (LSB)
embedding; proving that transfer learning can support many steganography
techniques. Despite these improvements, research on steganalysis remains
tough. A major issue is that there is no reliable way to know if an image
hides any information. Although stenography and cryptanalysis represent
different modalities of data hiding and extraction, our study shows that
transfer learning can generalize across these domains by learning rich
feature representations. This highlights its potential as a unifying tool in
building scalable and efficient models for diverse information security tasks.
Despite addressing distinct security issues, steganalysis and cryptanalysis
are similar in that they both require the extraction of high-dimensional
features. This paper shows how pre-trained models may be successfully
transferred to both domains by utilising transfer learning, allowing for a
cohesive and effective security

As a result, there is a need for better and more thorough testing of many
stenography algorithms to improve the confidence and accuracy of
detection. Results from the study prove that a model can be trained to
accurately identify most images that wuse different steganography
techniques. Essential to this is developing a model that can spot image data
hidden by legacy methods as well as by the strongest, most up-to-date
approaches in stenography. Such a design would be very useful for practical
steganalysis, supporting better and more successful detection in actual
situations. The model will be developed further by testing it with a variety of
stenographic programs.
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Future Work

The main priority for upcoming work is to optimize the model’s output by
changing important parameters, including the learning rate, training size of
batches and the number of training steps. Giving the model access to a
greater mix of images and embedding approaches can improve both its
general performances and its capability to function robustly. It is necessary
to increase the range of stenography training so that the model can be
effective with any method or how much data is hidden. The goal is to design
methods that accurately detect hidden messages in images, including those
faced in practical uses.

Looking ahead, several directions remain open for exploration. Future work
will include testing the framework on unmasked and misaligned trace
datasets to assess its robustness in more challenging conditions.
Additionally, the methodology can be extended to support other
cryptographic algorithms such as DES and Serpent, broadening its
applicability. Finally, incorporating domain adaptation techniques could
enable generalization across different devices and acquisition setups,
enhancing the framework’s practicality for diverse hardware environments
and attack surfaces.

References:

1. Abd-El-Hafiz, SK, Abdelhaleem, SH & Radwan, AG 2016 ‘Novel
permutation measures for image encryption algorithms’, Optical and
Lasers in Engineering, vol. 85, pp. 72-83.

2. Abd-El-Hafiz, SK, Abdelhaleem, SH & Radwan, AG 2016, ‘Novel 1287
permutation measures for image encryption algorithms’, Optical and
Lasers in Engineering Opt. Lasers Eng., vol. 85, pp. 72-83.

3. Agate, V, Concone, F & De Paola, A 2023, ‘Bayesian modelling for
differential cryptanalysis of block ciphers: a DES instance’, IEEE Access,
vol. 11, no. 10, pp. 4809 — 4820.

4. Amirhossein, E, Francesco, R & Paolo, P 2021, ‘Reducing the cost of
machine learning differential attacks using bit selection and aPartial ML
Distinguisher’, School of Computer. Science and Information Technology,
Cryptology. ePrint Archive, Cork, Irland, Tech. Rep. pp. 1479.

5. Baksi, A, Breier, J, Chen, Y & Dong, X 2020, ‘Machine learning assisted
differential distinguishers for lightweight ciphers’, Cryptology. ePrint
Archive, Nanyang Technology. University., Singapore, Tech. Rep. 571.

6. Benamira, A, Gerault, D, Peyrin, T & Tan QQ 2021, ‘A deeper look
at machine learning-based cryptanalysis’, in Advances in Cryptology
(Lecture Notes Computer. Science). Cham, Switzerland: Springer, pp.
805-835

www.journal-administration.com



Journal of Research Administration Volume 8 Number 4

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bianchi, T, Piva, A & Barni, M 2009, ‘Efficient linear filtering of encrypted
signals via composite representation’, in Proceedings. 16th International.
Conference. Digit. Signal Process. Santorini, Greece, pp. 1-6.

Bianchi, T, Veugen, T, Piva, a & Barni, M 2009, ‘processing in the
encrypted domain using a composite signal representation: IEEE Int.
Workshop Inf. Forensics Secure. (WIFS), London, U.K., pp. 176—-180.

Bo Pang, Lillian Lee & Shivakumar Vaithyanathan. 2002, ‘Thumbs up
sentiment classification using machine learning techniques’, Proceedings
of the ACL-02 conference on Empirical methods in natural language
processing, vol. 10, pp. 79-86.

Bourbaki’s, N & Dollas, A 2003, ‘SCAN-based compression-encryption
hiding for video on demand’, IEEE Multimedia, vol. 10, no. 3, pp. 79-87.
Cheng, H & Li, X 2000, ‘Partial encryption of compressed images and
videos’, IEEE Transactions on Signal Process. vol. 48, no. 8, pp. 2439—-
2451.

Coutinho, M, de Oliveira Albuquerque, R, Borges, F, Villalba, LG & Kim,
TH 2018, ‘Learning perfectly secure cryptography to protect
communications with adversarial neural cryptography’, Sensors, vol. 18,
no. 5, p. 1306.

Dan C Cire ,san, Ueli Meier & Jiirgen Schmid Huber 2012, ‘Transfer
learning for Latin and Chinese characters with deep neural networks’, In
Neural Networks (IJCNN), The 2012 International Joint Conference, pp.
1-6.

Dash, T, Dambekodi, SN, Reddy, PN & Abraham, A 2020, ‘Adversarial
neural networks for playing hide-and-search board game Scotland Yard’,
neurocomputer. Appl., vol. 32, no. 8, pp. 3149-3164.

David, E, Rumelhart, Geoffrey E Hinton & Ronald J Williams 1988,
‘Learning representations by back-propagating errors’, Cognitive
modelling, vol. 5, no. 3, pp. 1.

Deng, L 2012, ‘The MNIST database of handwritten digit images for
machine learning research’, IEEE Signal Process. Mag., vol. 29, no. 6, pp.
141-142.

Diaconu, AV 2016, ‘Circular inter—intra pixels bit-level permutation and
chaos-based image encryption’, Information. Science., vols. 355-356, pp.
314-327.

Dorokhin, ES, Fuertes, W & Lascano, E 2019, ‘On the development of an
optimal structure of tree parity machine for the establishment of a
cryptographic key’, Secure. Communication. Network., vol. 2019, pp. 1-
10.

Dufaux, F & Ebrahimi, T 2000, ‘Scrambling for privacy protection in video
surveillance systems’, IEEE Transaction on Circuits and Systems. Video
Technol., vol. 18, no. 8, pp. 1168-1174.

Dunjko, V, Taylor, JM & Briegel, HJ 2016, ‘Quantum-enhanced machine
learning,” Physics. Review. Letters. vol. 117, no. 13.

www.journal-administration.com



Journal of Research Administration Volume 8 Number 4

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Fardin Ghorbani, Javad Shabanpou, Sina Beyragh & Hossein Soleimani
2021, ‘A deep learning approach for inverse design of the meta surface
for dual-polarized waves’, Applied Physics, Voll 1, PP 869.

B. A. D. Kumar, S. C. Teja R, S. Mittal, B. Panda, and C. K. Mohan,
“inferring DNN layer-types through a hardware performance counters-
based side channel attack,” in Proc. 1st Int. Conf. AI-ML-Syst., Oct. 2021,
pp. 1-7

A. A. Ahmed, M. K. Hasan, N. S. M. Satar, N. S. Nafi, A. H Aman, S.
Islam, and S. A. Fadhil, “Detection of crucial power side chan nel data
leakage in neural networks,” in Proc. 33rd Int. Telecom mun. Netw. Appl.
Conf., Melbourne, Nov. 2023, pp. 57-62

Q. Guo, A. Johansson, and T. Johansson, “A key-recovery side-channel
attack on classic McEliece implementations,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 1, no. 4, pp. 800-827, Aug. 2022

A. Spence and S. Bangay, “Security beyond cyber security: Side-channel
attacks against non-cyber systems and their countermeasures,” Int. J.
Inf. Secur., vol. 21, no. 3, pp. 437-453, Jun. 2022

Y. Liu, B. Zhao, Z. Zhao, J. Liu, X. Lin, Q. Wu, and W. Susilo, “SS-DID: A
secure and scalable web3 decentralized identity utilizing multi-layer
sharding blockchain,” IEEE Internet Things J., vol. 11, no. 15, pp.
25694-25705, Mar. 2024

zZ. Wu,G.Liu, J. Wu, and Y. Tan, “Are neighbours alike? A semi
supervised probabilistic collaborative learning model for online review
spammers detection,” Inf. Syst. Res., vol. 34, no. 4, pp. 1321-1336, Oct.
2023

X. Wang and W. Zhang, “PacSCA: A profiling-assisted correlation-based
side-channel attack on GPUs,” in Proc. IEEE 38th Int. Conf. Com put.
Design (ICCD), Hartford, CT, USA, Oct. 2020, pp. 525-528

A. Thsan and E. Rainarli, “Optimization of K-nearest neighbour to
categorize Indonesian’s news articles,” Asia—Pacific J. Inf. Technol
Multimedia, vol. 10, no. 1, pp. 43-51, Jun. 2021.

L.X.Ying, A.H.Mohd Aman,M.S. Jalil, T.Mohd Omar,Z.S. Attarbashi, and
M. A. Abuzaraida, ‘“Malaysia cyber fraud prevention application:
Features and functions,” Asia—Pacific J. Inf. Technol. Multimedia, vol. 12,
no. 2, pp. 312-327, Dec. 2023.

A. Benamira, D. Gerault, T. Peyrin, and Q. Q. Tan, “A deeper look at
machine learning-based cryptanalysis,” in Advances in Cryptology
(Lecture Notes Comput. Science). Cham, Switzerland: Springer, 2021, pp.
805-835.

A. Jain and G. Mishra, “Analysis of lightweight block cipher few on the
basis of neural network,” in Harmony Search and Nature Inspired
Optimization Algorithms. Singapore: Springer, Aug. 2018, pp. 1041-
1047.

www.journal-administration.com



	Pseudocode: Advanced Optimal Model For Aes Cryptanalysis
	Overall Performance Evaluation Metrics
	4. Conclusion

