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Abstract: 

Cryptanalysis is essential for evaluating the robustness of modern encryption 

algorithms such as the Advanced Encryption Standard (AES) against various attacks. 

However, traditional cryptanalysis methods are often time-consuming, require deep 

domain expertise, and struggle to scale effectively when analysing high-dimensional 

data such as cipher texts and side-channel emissions. Moreover, the lack of 

standardized analysis techniques poses challenges in identifying subtle 

vulnerabilities and anomalies within AES implementations. To address these 

limitations, this study proposes a novel cryptanalysis framework based on transfer 

learning, which leverages pre-trained deep learning models from diverse domains to 

automatically extract and analyse meaningful features from side-channel data and 

AES-related cryptographic elements. This Transfer Learning-based Cryptanalysis 

Framework (TLCF) significantly reduces manual feature engineering and improves 

the detection of information leakage, structural anomalies, and potential attack 

vectors in AES systems. While steganography and cryptanalysis target distinct threat 

surfaces hidden communication and key recovery respectively both benefit from 

transfer learning’s ability to extract robust, transferable features from complex input 

domains. This unified approach enables the application of deep feature learning 

across heterogeneous security tasks. Furthermore, knowledge distilled from related 

ciphers such as DES and Serpent is incorporated to enhance generalization and 

robustness across different cryptographic settings. Experimental evaluations 

demonstrate that the proposed approach achieves high accuracy in vulnerability 

detection and outperforms traditional methods, especially when analysing the impact 

of fault injections on AES implementations. By integrating transfer learning into the 

cryptanalysis pipeline, this work advances the automation, efficiency, and precision 

of evaluating encryption schemes, contributing to a deeper understanding of 

cryptographic security. 

Keywords: Cryptanalysis, Transfer Learning, Side-Channel Analysis, 

Steganography Detection, AES Encryption, Symbolic Cipher text Modelling. 

 

1. Introduction  

Cryptanalysis is a critical field that aims to identify weaknesses and 

vulnerabilities in cryptographic systems. Before, cryptanalysts depended 

mostly on their mathematical skills and knowledge of the field. Yet, 
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improvements in deep learning recently, mainly with transfer learning, have 

provided fresh chances to boost both how accurate and efficient 

cryptanalytic methods are. This work examines using transfer learning in 

cryptanalysis, creating new methods that rely on deep machine learning to 

cope with analysing cryptographic faster and more accurately [1]. Major 

topics discussed are feature extraction, analysis of side channels and 

spotting abnormalities. Experiments are performed using many 

cryptographic tools to compare and assess the methods suggested in the 

paper with those used in cryptanalysis. Researchers found that by using 

transfer learning, they can both save time and increase the accuracy of their 

attack, underlining its possible benefits for current cryptanalysts.  

Many researchers examine transfer learning in areas such as computer 

vision and natural language processing and it helps models exchange 

knowledge gathered in one field to do better in similar fields [2]. Instead of 

using labelled datasets for specific tasks, the pre-trained models from 

transfer learning help train a new model by providing insights from vast, 

pre-processed data. Transfer learning has been successful outside 

cryptography, but its use in cryptanalysis is still not well studied. By 

detailing its underlying ideas and showing how it helps on a practical level, 

this paper helps close this gap in cryptographic vulnerability assessment [3]. 

This study looks at using transfer learning in cryptanalysis, mainly to 

enhance finding and identifying weaknesses in cryptography. We use a 

transfer learning model with a minimal amount of data, but show it results 

in a much higher detection success rate than standard methods. Because 

pre-trained deep neural networks were trained on large image classification 

and signal processing datasets, we use them to extract useful information 

from cipher texts and various cryptographic objects. They help to uncover 

secrets that are hard to detect using either conventional statistics or manual 

work. Our approach helps by enabling us to recognize very small leaks 

caused by changes in power usage or execution time which are connected to 

cryptographic keys. Because of transfer learning, the use of side-channel 

characteristics enables the model to work well in many situations without 

much particular data. Moreover, we teach machine learning classifiers using 

tidy data that contains genuine AES communication traffic to find out what 

normal behaviour is [4]. Because of the baseline, the system is able to spot 

unusual behaviour in cryptography which helps with strong anomaly 

detection and finding implementation flaws or breaches. This process allows 

the models to be well-suited for important research in cryptographic 

applications. 

To improve model performance, we employ a systematic grid search strategy 

to optimize key hyper parameters. The major contributions of this study are 

as follows: 

• We utilize transfer learning with pre-trained models to analyse AES-

related data, including cipher texts and side-channel emissions. 
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Experimental results show a significant increase in detection 

accuracy, even with limited data, confirming the capability of transfer 

learning to extract meaningful features in cryptographic contexts. 

• Our approach enables the identification of information leakage, 

strengthens side-channel attacks, and supports anomaly detection in 

AES implementations. By leveraging existing deep learning 

architectures, we bypass manual feature engineering and instead use 

learned representations to detect potential protocol flaws and unusual 

cryptographic behaviour. The models are trained and validated on 

actual AES traffic and side-channel traces, ensuring relevance to 

practical attack scenarios. 

• A comprehensive grid search is conducted across critical hyper 

parameters such as learning rate, number of hidden units, optimizer 

type, activation functions, and dropout rate. This optimization process 

results in improved model accuracy and reduced test error. The 

effectiveness of the proposed framework is validated through extensive 

evaluation using standard cryptographic classification metrics, 

demonstrating its utility in modern AES cryptanalysis. 

The paper is structured as follows to give a thorough grasp of our work: The 

difficulties and reasons for using transfer learning in cryptography are 

presented in Chapter 1. The limits of conventional approaches and related 

works are covered in Chapter 2. The suggested methodology, including the 

methods for feature extraction, anomaly detection, and side-channel attack 

amplification, is described in full in Chapter 3. The experimental setup and 

results are shown in Chapter 4, after which the performance measures are 

analyzed. Lastly, a discussion of the research's ramifications and future 

directions wraps up Chapter 5. 

2. Literature Survey 

In recent years, scientists in neural cryptography have studied how 

synchronizing neural networks can improve safe key sharing through public 

networks. By deploying a complex-valued tree parity machine (CVTPM) in 

their framework, strengthened both security and privacy, since only protocol 

participants can exchange two group keys in one synchronized step and 

prevent eavesdroppers from monitoring traffic [7]. ISACA Last year, released 

a session key exchange protocol based on a Generative Adversarial Network 

(GAN) that improves both the efficiency and security of synchronization. 

Cryptanalysis is witnessing resurgence through deep learning and transfer 

learning. Propose MIND Crypt, a deep residual network trained to 

distinguish SPECK32/64 cipher texts. Leveraging transfer learning, they 

reduce required training samples from millions to tens of thousands—
boosting attack efficiency substantially. Author explores topic modelling in 

chosen-plaintext attacks [8]. By combining CNNs, GRUs, and LSTMs, their 

framework predicts the “topic” of encrypted texts—achieving 80 % F1-score 
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signalling novel directions for side-channel and metadata inference. On a 

different front, Carlini et al. and colleagues tackle model extraction of neural 

networks under a cryptanalytic lens. Their 2024 work demonstrates, via 

polynomial-time methods, that DNN parameters can be fully recovered even 

when only hard-label outputs are available raising concerns about model 

secrecy. 

Demonstrate a breakthrough in model security with their work on 

polynomial-time extraction of DNN parameters from hard-label outputs [9]. 

By treating neural network weights as cryptographic secrets, they show that 

even classification-only interfaces can be reversed efficiently. Building on 

neural distinguishers, optimize deep differential-neural attacks using 

inception modules and knowledge distillation. Their enhanced architecture 

successfully attacks more rounds of Speck32/64 and Simon32/64 with 

improved efficiency. 

Contributed two methods, Spider Monkey Optimization and 

Gravitational Search that help bridge neurons quickly and make 

neural key exchange protocols more reliable [10]. Synchronization was 

analysed in neural key exchange protocols, where potential dangers 

were tackled and new approaches were suggested to boost security 

with deeper neural layers and better learning conventions. Finally, 

introduce neural inspired integral cryptanalysis, where neural 

networks guide the search for integral distinguishers on 

SKINNY64/64. This approach enables key-recovery attacks with 

greater rounds and fewer active bits than previous methods. 

The latest developments in neural cryptography aim to boost the speed and 

safety of key exchange protocols by making sure synchronization happens 

quickly and that the system can withstand attacks [11]. Integrating 

Recurrent Neural Networks (RNNs) and drive-response mechanisms now 

makes it simpler and more secure to generate keys on the Industrial 

Internet of Things (IIoT). This method uses polynomial control and Lyapunov 

tests to make devices synchronous, allowing it to outperform original 

synchronization techniques in speed and reliability. Chaos tuned neural 

networks are another key tool that allow all partners in the communication 

to share the same secret key at once [12]. By using the unexpected nature of 

chaotic systems, this method enhances security and has resulted in fewer 

steps needed for synchronized communication. While dealing with quantum 

channel problems in cryptography, scientists have relied on artificial neural 

networks to make sure messages from one computer to another are correct. 

By exploring mutual learning, researchers have determined the best 

arrangements and repetitions needed for secure and efficient 

synchronization in quantum key distribution systems. 

In addition, building complex-valued neural networks such as the CVTPM, 

makes it possible for multiple group keys to be changed together during a 

single synchronization step. Besides enhancing security, this development 
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helps trim down key exchange time which is essential for real-time usage 

[13]. Also, by applying GANs, the methods used in neural key exchange 

protocols now produce better quality random inputs and can synchronize 

more quickly. It helps the system safely resist usual risks, for instance, 

man-in-the-middle attacks. All of these studies point out the potential for 

neural networks to transform the way cryptographic key exchange takes 

place. Focusing on cutting synchronization delays and strengthening safety 

allows these methods to support improved and reliable cryptography for IoT, 

quantum networks and securely shared data. 

3. Proposed Advanced Optimal Approach Model 

The research seeks to improve cryptanalysis using transfer learning, to 

avoid the lengthy and complex drawbacks of previous methods. It allows us 

to use existing models and find hidden weaknesses in the patterns found in 

ciphertext and side channels. This study presents a transfer learning-based 

cryptanalysis framework designed to recover AES key bytes from side-

channel and ciphertext data. We use the ASCAD dataset, which consists of 

200,000 power traces collected from a masked AES implementation on an 8-

bit Atmel microcontroller. Each trace contains 700 aligned time samples 

corresponding to a single AES encryption, along with metadata including the 

plaintext, key, and masking information. We target the recovery of Key Byte 

3, a common benchmark in side-channel research. The dataset is split into 

100,000 training traces, 10,000 validation traces, and 50,000 test traces. 

The model of proposed transfer learning is illustrated in Figure 3.1.(a) 

We employ ResNet-18 (pretrained on ImageNet) to analyse side-channel 

traces treated as 1D signals. The network is modified by replacing the final 

classification layer with a fully connected layer of 256 neurons followed by 

Soft Max activation, corresponding to the 256 possible AES byte values. A 

grid search is used to tune key hyper parameters, including learning rate 

(1e-3), dropout (0.3), and batch size (128), using Top-1 accuracy and F1-

score on the validation set as selection metrics. To address domain shift 

from natural images to trace signals, we freeze the early convolution layers 

initially, then gradually unfreeze them during training. For symbolic 

ciphertext analysis, AES-encrypted outputs were represented as 

hexadecimal strings. Each ciphertext was tokenized at the byte level (2 

hexadecimal characters per token), allowing each byte to be mapped to an 

embedding vector during input to the BERT model. The dataset consists of 

[N] ciphertext samples generated using a fixed-key AES encryption scheme 

applied to random plaintext inputs. This dataset was synthetically generated 

using PyCryptodome, ensuring control over label classes such as key 

leakage, timing, or structure variation. The primary task is binary 

classification, where the model predicts whether a given ciphertext was 

generated using a standard implementation or a modified one that 

potentially leaks information. Preprocessing included segmenting each 
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ciphertext to fixed-length sequences (e.g., 16 bytes for AES-128), with 

padding applied as needed. The final [CLS] token output is passed through a 

dropout and dense layer for classification. We fine-tune only the top 

transformer layers with a smaller learning rate (1e-5) and batch size (32) to 

maintain generalization. 

All models were fine-tuned using the Adam optimizer, with learning rates 

ranging from 1e-3 to 1e-5, selected via grid search. Each model was trained 

for 20 to 50 epochs, depending on convergence behaviour, with early 

stopping based on validation loss and accuracy. A batch size of 128 was 

used for CNNs, while 32 was used for BERT-based models due to memory 

constraints. To manage domain shift between pre-trained source domains 

(e.g., ImageNet for ResNet, language modelling for BERT) and the target 

cryptographic domain, we applied layer freezing during the initial training 

phases, followed by gradual unfreezing and fine-tuning. This two-phase 

approach allowed the models to retain generalizable features while adapting 

to cryptographic structures, such as AES leakage patterns and ciphertext 

sequences. 

Model 
Pretrain

ed On 

Task-

Specific 

Layers 

Added 

Ep

oc

hs 

Bat

ch 

Size 

Optimi

zer 

Lear

ning 

Rate 

Domain 

Adaptatio

n Strategy 

ResNet-

18 

ImageNe

t 

Dense (256) 

+ SoftMax 

30

–
50 

128 Adam 

1e-3 

to 

1e-4 

Initial 

layer 

freezing → 
gradual 

unfreezin

g & 

tuning 

VGG-16 
Image 

Net 

Flatten + 

Dense (512) 

+ Dropout 

(0.3) + 

Dense (256) 

+ SoftMax 

20

–
40 

128 Adam 

1e-3 

to 

1e-4 

Layer 

freezing, 

selective 

fine-

tuning of 

deeper 

layers 

VGG-19 
ImageNe

t 

Same as 

VGG-16 

20

–
40 

128 Adam 

1e-3 

to 

1e-4 

Same as 

VGG-16 
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BERT-

Base 

Masked 

LM 

(Books 

Corpus 

+ 

Wikipedi

a) 

Dropout 

(0.3) + 

Dense (256) 

+ SoftMax 

20

–
30 

32 
Adam

W 
1e-5 

Freeze 

transform

er layers 

→ 
unfreeze 

top 4 

layers 

Transfor

mer 

Encoder 

(custom) 

Languag

e 

modellin

g 

Dense (512) 

+ ReLU + 

Dropout 

(0.3) + 

Dense (256) 

+ SoftMax 

30

–
50 

32 Adam 1e-4 

Trained 

from 

scratch 

with 

cryptogra

phic 

sequences 

Table 3 Model Configurations and Domain Adaptation Strategies for 

Transfer Learning 

As shown in Table 3 each model was initialized with pretrained weights and 

extended with task-specific layers. For cryptanalysis, ResNet-18 processed 

time-series signal traces, while BERT-Base handled byte sequences. For 

steganalysis, VGG-16 and VGG-19 extracted visual features from embedded 

images. 

3.1 — Overview of the Transfer Learning Framework 

 

 

 

 

 

Figure 3.1(a) Model for Transfer Learning 

The suggested model outperforms the baseline CNN in terms of training loss 

over epochs, as explained in Figure 3.1(a) suggesting improved convergence 

during optimisation.  



Journal of Research Administration                                                                                   Volume 8 Number 4 

www.journal-administration.com 992 

 

They are particularly useful because, as flexible architecture, Transformers 

scale well and can process a range of time-series leakage and ciphertext 

sequences quickly. Their use of self-attention allows them to consider 

multiple inputs together, supporting their application in many different 

types of cryptography [17]. Thanks to these models, it becomes possible to 

use them in transfer learning, keeping the common cryptographic feature 

understanding found in different training data. 

 
Figure 3.1 (b): Architecture VGG-16 

Additionally, Figure 3.1(b) validates the efficacy of the selected hyper 

parameters by demonstrating a steady improvement in classification 

accuracy across the training period. 

During fine-tuning, the shallower layers are often frozen, to maintain generic 

visual properties, whilst the deeper layers are re-trained, to accommodate 

task-specific information, such as learning encrypted text patterns or 

learning decoding rules. The simplicity of VGG-16, its suitability to standard 

transfer learning procedures and its demonstrated success in a wide range 

of vision tasks make it a natural choice to adopted in cryptanalysis 

frameworks based on deep learning, especially when the task demands 

small and efficient representations. 

Transfer learning gives us a useful and promising strategy to help improve 

cryptanalysis by relying on what has been learned and used before. With 

more research, we could increase how fast and correctly cryptographic 

systems are tested, resulting in stronger ways to safeguard information. But, 

using transfer learning for cryptanalysis has its own specific problems. 

Since cryptographic systems are different from most, it can be hard for them 

to match a source task suited for pre-training with a target task of 

cryptanalysis. The distribution of data which features are used and how 

statistical behaviour changes can impact the success of knowledge transfer 

[18]. For this reason, accurately analysing the mismatch is necessary, so 

that the transfer learning method can be adjusted to perform better. 

 

   (3.1) 

• The size of the dataset, denoted by n, is described by the 

notation. 

• y is the correct label value.  
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• γ the model's forecast value is denoted by the symbol  
 

The Equation 3.1 defines the Mean Squared Error (MSE) loss, which is used 

to train the model.In order to encourage the model to generate outputs that 

are more closely aligned with the actual key byte class, equation (3.1) 

computes the average squared error between the model's predicted values, y 

i, and the true labels, γ i. 

 
Figure 3.1 (c): Dual-Path Transfer Learning Framework for Unified 

Cryptanalysis and Steganalysis 

 Figure 3.1 (c) Our framework unifies cryptanalysis and 

steganalysis tasks using transfer learning. It summarizes the dual-path 

design, where cryptographic signals (e.g., side-channel traces and 

ciphertexts) are analyzed using ResNet; and BERT, while steganographic 

image features are extracted using VGG16 and evaluated across varying 

payloads. 

 

 

3.1.1 Model Training and Loss Evaluation 

Steps followed for cryptanalysis: 

1. Selection of Pre-trained Models: Begin by choosing a pre-trained 

model that has been trained on tasks relevant to your objective, such 

as sequence analysis or anomaly detection. This model will have 
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already learned important patterns or features from extensive and 

varied datasets, which can be valuable for your specific security task. 

2. Use of Initialization Data: In cryptographic systems, data involved in 

the initialization or key exchange processes is critical. This data can 

be analysed and processed using the pre-trained model to extract 

useful insights or detect irregularities that might compromise 

security. 

3. Fine-Tuning the Model: To tailor the pre-trained model to your 

cryptographic security needs, adjust its parameters while preserving 

the core knowledge it gained during initial training. This fine-tuning 

process enables the model to better recognize relevant characteristics 

in your specific data, enhancing its ability to secure the system. The 

forward pass during fine-tuning allows the model to process the input 

data and update its understanding based on the new context. 

4. Output from the Pre-trained Model (Fine-Tuned Layers) 

By following these steps, the transfer learning model can be effectively 

adapted to support and strengthen the cryptographic protocol during its 

sensitive initialization phase [19]. After extracting features from the 

earlier layers, the output is passed through additional layers tailored to 

the specific task 𝑍𝑝𝑟𝑒𝑓𝑡(𝑥) = 𝑓𝑝𝑟𝑒𝑓𝑡(𝑥; ∅𝑝𝑟𝑒_𝑓𝑡) (3.1.1) 

This equation defines theforward propagation through the frozen pretrained 

layers of the model: 

                                x is the input sample 𝑓𝑝𝑟𝑒𝑓𝑡 ∶Propagation in the pre-trained part of the model 

(forward). ∅𝑝𝑟𝑒_𝑓𝑡:Updated parameters of the pre-trained layers after 

fine-tuning. 

Zpre_ft is the intermediate output  after these layers. 

This equation 3.1.1 represents the output Zpre_ftZfrom the frozen 

(pre-fine-tuned) layers during forward propagation. Here,x is the input (e.g., 

signal trace or image), and θpre_ftare the fixed (non-trainable) weights of the 

pre-trained model used for feature extraction. 

5. Output from the New Task-Specific Layers 𝑍𝑛𝑒𝑤(𝑥) =  𝑓𝑛𝑒𝑤(𝑍𝑝𝑟𝑒𝑓𝑡(𝑥); ∅𝑛𝑒𝑤) (3.1.2) 𝑓𝑛𝑒𝑤: Forward pass of the new layers. ∅𝑛𝑒𝑤: Trainable parameters of these new layers. 𝑍𝑛𝑒𝑤(𝑥): Output of the task-specific transformation of the learned features. 

The features are extracted off the pre-trained layers and then the result is 

taken through other layers which are specific to the new task. 
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6. Final Output of the Model 𝑌𝑛𝑒𝑤(𝑥) = 𝑓𝑓𝑖𝑛𝑎𝑙(𝑍𝑛𝑒𝑤(𝑥)) (3.1.3) ffinal ∶Final activation or decision layer to produce task-specific 

predictions. 𝑌𝑛𝑒𝑤(𝑥) ∶The predicted label or output for the new task. 

7. Training Objective for Fine-Tuning: 

Given a labelled dataset for the new task: 𝐷𝑛𝑒𝑤 = {(𝑥𝑖, 𝑦𝑖)} (3.1.4) 

The training objective is defined using a loss function: 𝐿𝑛𝑒𝑤(∅𝑛𝑒𝑤, ∅𝑝𝑟𝑒_𝑓𝑡) (3.1.5) 

 

3.1.2 Validation Accuracy and Hyperparameter Tuning 

To optimize model performance, we employed a grid search strategy to 

systematically explore combinations of critical hyperparameters. The tuning 

process was evaluated using validation accuracy and Top-1 key byte 

classification accuracy as the primary metrics. Grid search was chosen 

due to its simplicity, exhaustive nature, and suitability for our bounded 

hyper parameter space. 

Hyperparameter Values Explored 

Learning Rate 1e-1, 1e-2, 1e-3, 1e-4 

Optimizer 

Adam, SGD, 

RMSpr

op 

Batch Size 64, 128, 256 

Dropout Rate 0.2, 0.3, 0.4, 0.5 

Activation Function ReLU, Leaky ReLU 

Number of Filters 

32, 64, 128 

(inmodi

fied 

ResNet 

layers) 

Table 3.1.2 (a) Dual-Path Transfer Learning Framework for Unified 

Cryptanalysis and Steganalysis 

The hyper parameter search space utilised to maximise model performance 

is described in Table 3.1.2(a). Multiple values for learning rate, optimiser, 

batch size, dropout rate, activation functions, and number of filters were 

searched in a grid. The optimal setup for cryptanalysis and steganography 
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detection tasks was found after a thorough tuning procedure, with 

performance evaluated using F1-score and Top-1 accuracy. 

As shown in Table 3.1.2(a), we employed an exhaustive grid search to 

determine the optimal hyperparameters. This tuning was evaluated using: 

• Top-1 Accuracy 

• F1-Score (Macro-Averaged) 

 

Tuning Method 

We performed an exhaustive grid search, training each hyperparameter 

combination for 20 epochs on the training set. The evaluation was 

conducted on a separate validation set using two primary metrics: 

• Top-1 Accuracy: Measures the proportion of correct key byte 

predictions. 

• F1-Score (Macro-Averaged): Evaluates the balance between precision 

and recall across all 256 AES key byte classes. 

These metrics were chosen to ensure both accuracy and class-wise 

consistency in model performance, given the multi-class nature of AES key 

byte classification. 

Final Selected Hyperparameters 

Based on validation results, the following configuration achieved the best 

performance: 

• Learning Rate: 1e-3 

• Optimizer: Adam 

• Batch Size: 128 

• Dropout Rate: 0.3 

• Activation Function: ReLu 

• Number of Filters: 64 

This tuning strategy ensured that our model achieved high accuracy while 

maintaining generalization and stability in cryptanalysis tasks. 

 Test Result 

For this research, the datasets used are BOSSbase which is a commonly 

accepted benchmark in steganography and steganalysis. BOSSbase offers 

10,000 gray-scale images at 512×512 pixels, converted to 224x224 each 

showing a different part of the natural environment. This dataset is well-

suited for analysing steganography and detection thanks to its extensive and 

complex nature that matches actual image distributions. The current study 

used BOSSbase images that had data hidden in them using 0.7 bits per 

pixel, 0.4 bits per pixel and 0.2 bits per pixel [21]. The embedding payloads 

of 0.7 bits per pixel (bpp) and 0.4 bpp represent higher levels of data 

embedding, which introduce more noticeable perturbations in the cover 

images. These modifications result in stronger statistical footprints, making 

the steganographic patterns more detectable by machine learning models. 

Embedding different patterns of hidden text shows the models how well they 
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respond to different steganographic strengths. Thanks to BOSSbase, the 

model’s accuracy, false positive rates and loss values can be understood and 

assessed similarly to measurements in another research. Step one was to 

normalize the images which helps improve results for training models. Next, 

I resized the images to be compatible with the neural network’s input needs. 

The models were tested and refined on one group of data from BOSSbase, 

while a different group was used to check how well they would work in 

practice [22]. Having selected BOSSbase for the dataset created a firm and 

standard style for canvassing transfer learning in steganography detection. 

 

Table 3.1.2 (b) Recall Scores for LSB Steganography Detection Across 

Varying Payloads 

Payload Recall Average/total 

 0.0 1.0 75000 

LSB 0.82 0.92 0.89 

1.0 0.79 0.87 0.81 

0.9 0.74 0.90 0.76 

0.8 0.67 0.68 0.76 

0.7 0.72 0.75 0.64 

0.6 0.69 0.63 0.70 

0.5 0.68 0.54 0.67 

0.4 0.82 0.86 0.79 

0.3 0.70 0.50 0.62 

0.2 0.91 0.34 0.55 

0.1 0.90 0.20 0.52 

 

The recall scores of the transfer learning model at various payload sizes (in 

bits per pixel) for steganographic content detection are shown in this table. 

The model's recall indicates how well it can recognise stego images. Recall 

typically declines with decreasing payload, highlighting the difficulty of 

identifying low-embedding stego signals. The outcomes demonstrate how 

sensitive the model is to embedding strength. 
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Table 3.1.2(c) F1-Scores for LSB Steganography Detection at Different 

Payload Levels 

Payload F1-Score Average/total 

 0.0 1.0 75000 

LSB 1.0 1.0 0.99 

1.0 0.83 0.92 0.92 

0.9 0.80 0.90 0.88 

0.8 0.80 0.88 0.85 

0.7 0.79 0.86 0.84 

0.6 0.76 0.82 0.82 

0.5 0.76 0.78 0.80 

0.4 0.62 0.74 0.79 

0.3 0.54 0.79 0.77 

0.2 0.68 0.72 0.75 

0.1 0.45 0.68 0.70 

 

The transfer learning model's F1-scores, which combine precision and recall, 

are shown in Table 3.1.2 (c) for different payload levels. Larger payloads 

(e.g., 1.0, 0.9 bpp) yield higher F1-scores, suggesting that stronger 

embedding signals function well in detecting buried data. Because of the 

more subtle changes in the stego pictures, lower payloads result in 

moderate-to-low F1-scores. 

 

The study shows that a lower payload size in stego images can negatively 

affect how easily they are detected. This drop in performance is attributed to 

the model’s lack of exposure to highly randomized and low-signal stego 

images during training. As a result, the model often has trouble discovering 

hidden details when imagery has lower embedding rates. The observations 

show that as the amount of data in the payload lowers, the detection 

accuracy decreases significantly with the transfer learning model only 

slightly decreasing near the 0.5 bps boundary [23]. However, the common 

approach achieves a success rate of 50% on data from both training and 

testing, showing it fails to strong claim about its results in low-payload 

situations. Applying transfer learning to the most difficult category of 

embedded payload images boosts important results such as accuracy, recall 

and F1 score for telling cover (original) images from stego (embedded) 

images. With these metrics, we can see how well the model knows the 

difference between objects and scenes. Precision of 0.0 shows the percentage 

of right cover image predictions and a precision of 1.0 means the percentage 

of right stego image predictions. Similarly, recall measures how good the 
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model is at finding covers from each class—no cover images were found 

correctly if recall is 0, but all were located if recall is 1.  

Researchers chose VGG16 as the backbone for transfer learning because it 

performs well in image classification and can pick out several levels of 

features in the input images. The rightness of model predictions was 

measured using commonly used scores such as accuracy, precision, recall 

and the F1 score. Combined, these metrics capture the overall strength of 

the model, its skill at both detecting and missing hidden images and its 

resistance to problems caused by differences in class numbers, all essential 

criteria for judging performance in hidden image detection [24]. If these 

familiar algorithms are used, the performance of the model can be compared 

properly to similar methods in the field. 

If a model has a recall of 0, it indicates it was unable to properly anticipate 

any of the test cover photos. If a model has a recall of 1, it perfectly predicts 

100% of the test stego images. – The results of the proposed algorithm's 

recall are shown in the table. 

Table 3.1.2 (d) Precision comparison with varying embedding payloads 

Payload Precision Average/total 

 0.0 1.0 75000 

LSB 0.99 0.99 0.99 

1.0 0.98 0.86 0.92 

0.9 0.96 0.80 0.88 

0.8 0.94 0.76 0.85 

0.7 0.94 0.75 0.84 

0.6 0.93 0.72 0.82 

0.5 0.91 0.70 0.80 

0.4 0.90 0.68 0.79 

0.3 0.89 0.66 0.77 

0.2 0.86 0.65 0.75 

0.1 0.78 0.62 0.70 

 

Precision scores, which show the percentage of projected stego pictures that 

are truly correct, are shown in this table for different payload levels. When 

the payload is reduced, the model shows a progressive drop in precision, 

indicating a higher number of false positives at lower embedding densities. 

Table 3.1.2 (e) CNN baseline precision (non-transfer learning) 

Payload Precision Average/total 

 0.0 1.0 75000 

LSB 0.92 0.86 0.89 

1.0 0.87 0.75 0.81 

0.9 0.85 0.68 0.76 

0.8 0.80 0.72 0.76 
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0.7 0.67 0.62 0.64 

0.6 0.72 0.69 0.70 

0.5 0.74 0.60 0.67 

0.4 0.66 0.58 0.79 

0.3 0.61 0.54 0.62 

0.2 0.59 0.52 0.55 

0.1 0.52 0.52 0.52 

 

The precise performance of a baseline CNN model without transfer learning 

is contrasted in Table 3.1.2 (e). The benefits of using pretrained feature 

extractors for steganography detection are demonstrated by the consistently 

lower precision scores across all payload levels when compared to the 

transfer learning model. 

 

Table3.1.2 (f) Recall scores using the proposed transfer learning 

framework. 

Payload Recall Average/total 

 0.0 1.0 75000 

LSB 1.0 1.0 0.99 

1.0 0.86 0.98 0.92 

0.9 0.83 0.95 0.88 

0.8 0.79 0.92 0.85 

0.7 0.78 0.92 0.84 

0.6 0.62 0.92 0.82 

0.5 0.58 0.90 0.80 

0.4 0.46 0.88 0.79 

0.3 0.43 0.88 0.77 

0.2 0.42 0.85 0.75 

0.1 0.38 0.82 0.70 

 

Recall results for the suggested transfer learning model across various 

payloads are shown in this table. It illustrates how sensitive the model is to 

stego image detection, particularly at greater payloads. The transfer learning 

method still performs noticeably better than the baseline model, despite 

performance declining at lower embedding rates, confirming its efficacy in 

delicate steganographic contexts. 

 

Pseudocode: Advanced Optimal Model For Aes Cryptanalysis 

Algorithm: AES_Cryptanalysis_Transfer Learning_Model 

 

Input: Side-channel trace dataset D (e.g., ASCAD) 

Output: Trained model M for AES key byte prediction 
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1. Preprocess_Input(D) 

   a. Compress traces to fixed format (e.g., 0.1 bpp equivalent) 

   b. Normalize inputs (zero-mean, unit-variance) 

 

2. Initialize_Model () 

   a. Load pre-trained model backbone (e.g., VGG19 or ResNet) 

   b. Freeze early layers (retain low-level features) 

   c. Add task-specific layers: 

      - Fully connected layer with 256 outputs 

      - SoftMax activation 

   d. Initialize added layers (e.g., Xavier initialization) 

 

3. Train Model(D) 

   for epoch = 1 to N do 

      Shuffle D and divide into mini-batches {B₁, B₂, ..., B_k} 

      for each mini-batch B in D do 

         Forward pass: 

            features ← Backbone(B) 
            predictions ← Task_Specific_Layers(features) 
         Compute loss L (e.g., CrossEntropy(predictions, labels)) 

         Backward pass: 

            Compute gradients of L w.r.t. trainable parameters 

            Update parameters using optimizer (e.g., Adam) 

      end for 

   end for 

 

4. Post Training () 

   a. Evaluate model M on validation set 

   b. Save or export M for deployment or further analysis 

 

Return: Trained model M 

We studied how well the models learned as we measured their results over 

time. During all the epochs, the Training Loss to understand the difference 

between a model’s predictions and the ground truth. The model that uses 

transfer learning far outperformed the one trained using just regular data. 

As a result, the team learned that the TL model produced predictions near 

the true labels as training continued [25]. Parallel to that, Training Accuracy 

recorded how many times each model predicted the classes correctly over 

the course of their training. Transfer learning was able to gain a better 

understanding of relevant points and use them to learn from the training 

information. It appears that with the changes made, the TL model’s 

predictions became much more accurate and trustworthy. All in all, these 

findings show that including transfer learning helps models learn faster and 

perform predictions better than training without it. 
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Figure 3.1.2 (a) the Loss Comparison of the Proposed Algorithm 

 

 

 
Figure 3.1.2(b) the Accuracy Comparison of the Proposed Algorithm 

After the training was complete, the model’s weights stayed the same in the 

evaluation stage. Evaluating the model mainly looked at precision and its 

loss through certain statistics. In each evaluation phase, the same amount 

of input images was processed to maintain consistency. Math based the loss 

on predictions that were off, not on a basic percentage. The datasets used 

for the evaluation spanned a payload range from 1.0 bpp to 0.1 bpp. 

Likewise, the best performance was seen for images with a higher payload, 

leading to fewer loss values. Lower-payload images (0.1 bpp) were harder to 

process and resulted in a higher amount of loss because the differences in 

the stego images were nearly invisible [26]. At payload levels of 0.4 and 0.3 

1 2 3 4 5 6 7 8 9 10

TL-Train Loss 0.1 0.23 0.18 0.26 0.27 0.34 0.32 0.42 0.59 0.68

NoN-TL-Train Loss 0.12 0.21 0.32 0.48 0.65 0.62 0.78 0.79 0.82 0.83

Lo
ss

Payload Rate

Proposed Algorithm Loss Comparision

1 2 3 4 5 6 7 8 9 10

TL-Train Accuracy 0.96 0.92 0.91 0.88 0.87 0.84 0.8 0.79 0.71 0.67

NoN-TL-Train Accuracy 0.97 0.84 0.8 0.75 0.64 0.57 0.54 0.51 0.5 0.48

A
cc

u
ra

cy

Proposed Algorithm Accuracy Comparision

TL-Train Accuracy NoN-TL-Train Accuracy
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bpp, the loss rate appeared to increase because the model’s prediction 

confidence and accuracy were not stable.  

The loss was found using the binary cross-entropy formula which is 

appropriate for telling apart cover and stego images. 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 = − ∑ 𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖)log (1 − 𝑦𝑖)𝑁𝑖=1  (3.1.2) 

i is a sample image. There are N pictures in the dataset. Input picture i has 

a correct label of yi. The model's expected result for the i-th picture is 

denoted by yi. 

Cryptanalysis: 

This study introduces a deep learning-based cryptanalysis framework that 

leverages transfer learning with Res Net to perform side-channel analysis 

(SCA) on AES cryptographic implementations. The core objective is to 

recover AES key bytes by analysing power consumption traces using 

advanced neural architectures. Specifically, we employ the ResNet-18 

architecture, pre-trained on general signal classification tasks, and fine-tune 

it using labelled side-channel traces from the ASCAD dataset. This approach 

takes advantage of the representational power of deep convolution networks 

while reducing the need for large training datasets and extensive manual 

feature engineering. 

The experiments are conducted using the widely adopted ASCAD (AES Side-

Channel Dataset), which provides 200,000 electromagnetic traces collected 

from a masked AES implementation running on an 8-bit Atmel 

microcontroller. Each trace is a sequence of 700 aligned time samples and is 

associated with metadata including the corresponding key byte, plaintext, 

and masking values. The dataset is structured to support practical SCA 

research and evaluation. For this study, we focus on the recovery of Key 

Byte 3, a standard target for benchmarking SCA models. We divide the 

dataset into 100,000 traces for training, 10,000 for validation, and 50,000 

for testing to ensure robust model evaluation. 

The ResNet-18 model is adapted to handle 1D input traces by modifying the 

initial convolution layers. The final dense layer is restructured to classify 

256 possible values of an AES key byte. By fine-tuning this architecture on 

the ASCAD dataset through back propagation, the model learns to detect 

subtle variations in power traces that correspond to key-dependent 

operations. The use of transfer learning not only accelerates convergence 

but also improves accuracy, especially when dealing with noisy or limited 

side-channel data. This method demonstrates the feasibility and 

effectiveness of integrating modern deep learning techniques into practical 

cryptanalysis workflows. 

 

Experimental Setup 

Component Details 

Dataset ASCAD (aligned traces) 
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Component Details 

Key Byte Byte 3 

Architecture Modified ResNet-18 (1D input) 

Pretraining Signal classification (public waveform data) 

Batch size 128 

Optimizer Adam 

Learning rate 0.001 (optimized via grid search) 

Epochs 50 

Loss function Categorical Cross-Entropy 

Evaluation metric Guessing Entropy, Accuracy, Rank of Correct Key 

 

Table 3.1.2 (g) Configuration Details of the Transfer Learning Model for 

AES Side-Channel Cryptanalysis 

Overall Performance Evaluation Metrics 

Using these metrics shows both the success of the model at predicting and 

the average error displayed by its results. Table 3.7.1 and summarize the 

results so that you can see how much better the model does. The model was 

tested by running it on two different datasets created for this purpose. The 

data sets used the four models we have mentioned, mainly to improve 

forecasts of grain yield. By dividing the data in this way, it becomes easier to 

find out how well the model generalizes. The hyperparameters for the 

proposed and comparison models were adjusted via manual methods. 

Paying close attention to choose the learning rate, the quantity of hidden 

layers, the name of the optimizer, the kinds of activation functions used and 

the rates of dropout [31]. The goals behind manual tuning were to raise the 

model’s accuracy and at the same time maintain a low-test error in the 

context of transfer learning. Details of the chosen hyperparameters and their 

influence on training results are given in Table 3.7.1 which shows how the 

models were fine-tuned for the particular assignment. 

Model 
Accuracy 

(Top-1) 

Top-5 

Accuracy 

Average 

Rank 

CNN from Scratch 81.2% 92.4% 7.6 

ResNet (Transfer 

Learning) 
89.7% 96.8% 2.1 

Template Attack 

(Baseline) 
65.3% – 34.2 

Table 3.1.2 (h) Performance Comparison of Cryptanalysis Models on 

ASCAD Dataset 
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Transfer learning via ResNet improves both key byte prediction accuracy 

and reduces the average rank of the correct key, outperforming traditional 

template attacks and CNNs trained from scratch. 

 
Confusion Matrix for Key Byte Prediction 

The confusion matrix provides a visual representation of the model’s 

performance in predicting AES key byte values from side-channel traces. 

Each row represents the actual key byte, while each column shows the 

predicted value. A strong diagonal pattern indicates that the model correctly 

identifies the key bytes with high accuracy. Few off-diagonal entries suggest 

minimal misclassifications, typically occurring among neighbouring byte 

values. This indicates that the model can reliably distinguish between 

different key byte classes. The clear dominance of correct predictions 

validates the effectiveness of using transfer learning with ResNet for AES 

cryptanalysis through side-channel analysis in real-world scenarios. 
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Figure 3.1.2 (c)  Guessing Entropy vs Number of Traces 

 

 

Table 3.1.2(i)Overall Performance Evaluation Metrics 

Model Training Dataset Validation Dataset 

 MAE MSE RMSE R2 MAE MSE RMSE R2 

Transfer 

Learning 
0.17 0.02 0.14 0.85 0.18 0.03 0.15 0.82 

Deep 

Learning 
0.34 0.09 0.37 0.63 0.25 0.06 0.37 0.74 

Random3 

Forest 
0.63 0.62 0.83 0.21 0.62 0.61 0.73 0.37 

SVR2 0.55 0.35 0.62 0.56 0.45 0.29 0.51 0.52 

 

 

 
 

Figure 3.1.2 (d) Performance Evaluation Metrics 

 

 
 

Figure 3.1.2 (e) Accuracy and MAPE measure of the proposed deep 

lwqzearning 

Performance Evaluation Metrics

Deep Learning Artificial Neural Network Random Forest SVR

Accuracy and MAPE measure of the proposed deep 

learning model

Accuracy Measure MAPE (%)
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4. Conclusion 

Transfer learning using the Res Net architecture significantly enhances 

cryptanalysis performance on AES side-channel data. By leveraging pre-

trained models and fine-tuning them on targeted electromagnetic trace 

datasets, such as ASCAD, the proposed method achieves high key recovery 

accuracy while minimizing the reliance on large, labelled datasets or manual 

feature engineering. This approach enables efficient and scalable analysis of 

cryptographic implementations and facilitates the development of automated 

side-channel analysis (SCA) frameworks. The Res Net-based transfer 

learning model captures complex, informative patterns in power traces that 

are often difficult to extract using traditional or handcrafted techniques. As 

a result, it not only improves attack success rates but also reduces the 

number of traces required to recover cryptographic keys, making it well-

suited for real-world cryptanalysis scenarios. The transfer learning helps 

detect stenographic images, with good results even for images containing 

different sizes of payload and using a restricted amount of extra training 

data. The outcome is that including transfer learning in detection improves 

accuracy and reliability far more than training a model from zero. We saw 

better results for stego images made with least significant bit (LSB) 

embedding; proving that transfer learning can support many steganography 

techniques. Despite these improvements, research on steganalysis remains 

tough. A major issue is that there is no reliable way to know if an image 

hides any information. Although stenography and cryptanalysis represent 

different modalities of data hiding and extraction, our study shows that 

transfer learning can generalize across these domains by learning rich 

feature representations. This highlights its potential as a unifying tool in 

building scalable and efficient models for diverse information security tasks.  

Despite addressing distinct security issues, steganalysis and cryptanalysis 

are similar in that they both require the extraction of high-dimensional 

features. This paper shows how pre-trained models may be successfully 

transferred to both domains by utilising transfer learning, allowing for a 

cohesive and effective security 

As a result, there is a need for better and more thorough testing of many 

stenography algorithms to improve the confidence and accuracy of 

detection. Results from the study prove that a model can be trained to 

accurately identify most images that use different steganography 

techniques. Essential to this is developing a model that can spot image data 

hidden by legacy methods as well as by the strongest, most up-to-date 

approaches in stenography. Such a design would be very useful for practical 

steganalysis, supporting better and more successful detection in actual 

situations. The model will be developed further by testing it with a variety of 

stenographic programs. 
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Future Work 

The main priority for upcoming work is to optimize the model’s output by 

changing important parameters, including the learning rate, training size of 

batches and the number of training steps. Giving the model access to a 

greater mix of images and embedding approaches can improve both its 

general performances and its capability to function robustly. It is necessary 

to increase the range of stenography training so that the model can be 

effective with any method or how much data is hidden. The goal is to design 

methods that accurately detect hidden messages in images, including those 

faced in practical uses. 

Looking ahead, several directions remain open for exploration. Future work 

will include testing the framework on unmasked and misaligned trace 

datasets to assess its robustness in more challenging conditions. 

Additionally, the methodology can be extended to support other 

cryptographic algorithms such as DES and Serpent, broadening its 

applicability. Finally, incorporating domain adaptation techniques could 

enable generalization across different devices and acquisition setups, 

enhancing the framework’s practicality for diverse hardware environments 

and attack surfaces. 
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