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Abstract: In studying queuing systems, the main feature that reflects the 

system is the performance measures. Traffic intensity is considered one of the 

most important performance measures in the M/M/1 queuing system. In the 

present study we introduce a new frequents estimator for traffic intensity and 

examine its properties, and we also examine the sampling distribution of the 

estimator. We design a framework for testing hypotheses and construct 

confidence intervals and maximum likelihood estimators. We also performed a 

comparison with a few similar estimators of other authors. 
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1. Introduction 

The principle of queuing theory addresses the issue of overcrowding. It 

develops models to predict the behaviour of systems that strive to provide 

services to user groups. In this research work, we have taken the M/M/1 

single-server system. The M/M/1 system receives customers one by one, 

forming a single queue for the entire system. For a queuing practitioner, the 

knowledge of the model's numerical values is critical. However, various 

factors such as time constraints and the need for accurate estimates can 

easily limit this knowledge. This chapter aims to provide a detailed 

discussion of these factors and their related procedures. In M/M/1, one of 

the most important performance measures is the traffic intensity denoted by 

ρ and expressed as the ratio of the average service time to the average inter-
arrival time.  As stated by Clarke (1957), a technique for approximating the 

distribution of the maximum queue length in a queuing system was 

presented. The paper established a mathematical platform for analysing 

queuing behaviour in a steady-state regime where one interest was the 

probability distribution of the queue length. Clarke’s contributions provided 

an insight into the maximum queue size distribution, which has a great 
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impact on systems performance, especially in conditions where capacity 

issues or limitation of resources have influence. This research attempts to 

bring to the field ideas concerning queuing length distribution in various 

practices, thereby contributing to the initial development of queuing theory. 

Muddapur (1972) reviewed methods of statistics to first, test for performance 

measures in queuing systems, and second, estimate the performance 

measures. This work concentrated on the M/M/1 queue model and 

analysed methods for obtaining an approximation of the queue size and time 

for waiting. Muddapur proposed and evaluated different assessment models 

to overcome problems related to the surety and effectiveness of the 

procedures. The paper offered significant knowledge enhancements for 

queuing system behaviour and allowed practical approaches for its 

performance measurement and analysis. Schruben and Kulkarni (1982) 

tried to establish the statistical properties of classical performance 

estimators for M/M/1 queueing systems. However, they were able to 

demonstrate that these simple estimators, like the mean queue length or the 

waiting time, have substantial drawbacks, mainly because they presented 

undefined SE. This phenomenon leads to unreliable and problematic 

estimations of performance measures in steady-state simulation. Previous 

work showed that there are such pathologic properties for queuing models 

and that more suitable estimation methods have to be sought in order to 

enhance the fidelity of performance predictions. McGrath and Singpurwalla 

(1987) conducted a comprehensive review of performance analysis and 

estimation in queues, utilizing Bayesian-based approaches. Their research 

was mostly focused on how prior knowledge was incorporated into sample 

information to improve estimation of the parameter as well as decision-

making under a queuing system. They employed Bayesian methods to 

address issues such as reliability and the performance evaluation of system 

measures. The paper also compares and contrasts the functionalities of the 

two approaches, providing a brief overview of how helpful Bayesian inference 

is for analysing queuing systems. Basawa and Prabhu (1988) analysed 

stochastic processes for statistical inference, and this category includes 

queuing systems. Their work also addressed parametric and non-parametric 

approaches to estimation of the parameters of queues, especially concerning 

M/G/1 and other generalized queues. In particular, they stressed the role of 

the work with identifying proper and efficient estimators for these processes, 

some of the concerns being stationary, ergodicity, and the use of the 

likelihood function. They did enormous work on the theory of statistical 

inference in queuing models, providing easy methods of solving real-world 

problems. In the study, Armero and Bayari (1994) have also covered the 

applicability of statistical methods for both analysis and estimation of the 

parameters of the queuing system. Their major developments in their study 
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were both to present and evaluate estimators for a number of performance 

indices, such as queues and waiting time in several queuing systems. They 

also provided approaches for how one can deal with issues that may arise 

with regard to bias and efficiency of the estimator when used in queuing 

systems that possess some level of complexity or are formulated in a non-

conventional way. As stated in the paper, the identification of a proper 

method of estimation will improve the understanding of operation and 

control on queuing systems; thus, it has facilitated advancement in the field 

of queuing theory and application. Srinivas, Subba Rao, and Kale (2011) 

have mainly concentrated on the methods of statistical analysis for queuing. 

More precisely, the paper focused on estimating system parameters in 

queuing processes using simulation-based methods. They outlined methods 

to enhance the accuracy and reliability of estimators for queuing models, as 

well as the challenges in estimating model parameters when the system 

behaviour is complex or when the arrival distribution is unconventional. 

They brought new methods in simulation analysis, which provided ideas for 

solving practical issues in queuing systems, like evaluating performance and 

allocation of resources efficaciously. Chowdhury and Mukherjee (2013) have 

worked out maximum likelihood estimator (MLE) as well as Bayes estimator 

of traffic intensity in an M/M/1/∞ queuing model in equilibrium based on 

supported range of number within the queue at ordered departure epochs. 

They conjointly derived estimates of some functions of traffic intensity which 

offer measures of effectiveness of the queue and a comprehensive simulation 

study beginning with the transition likelihood matrix. 

 To understand the future behaviour of queuing systems, Srinivas and 

Udupa (2014) presented an analytical comparison of simulation techniques 

to measure and predict the output from queuing systems. They 

concentrated on the heuristics generated in overhauling the performance 

estimators as a way of reducing variance in the system, especially within the 

queuing networks. They looked at ways to diminish the effects of the initial 

transient conditions and increase the accuracy of steady-state evaluations. 

Furthermore, the study focused on the issues of using simple arrival and 

service rates to model real-life systems where rates are random, different, 

and constant and put forward the strategies of improved system planning 

and resource management. This paper contributed to the improvement of 

simulation models necessary for queuing system analysis. Choudhury and 

Basak (2018) specifically focused on issues concerning queuing systems, 

with special emphasis on performance evaluation in systems that have non-

orthodox arrival and service time processes. They looked at different queue 

arrangements and then imposed sophisticated stochastic methods to 

analyse and forecast the expected wait time, system percentage, and 

probability distribution of the queues. In the paper, the need to capture 
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such realities as time-varying rates and unsteady service characteristics was 

well pointed out. They used the ideas, which improved the more general and 

real-life queuing models as well as extended queuing theories. Suyama, 

Quinino, and Cruz (2018) studied the performance and analysis of queuing 

systems using simulation-based research. Their work was centred around 

designing and testing ways in which the performance indices can be 

predicted with a high degree of precision given that they exist in demanding 

queuing systems. They classified different simulation methods for working 

as follows for evaluating factors such as bias and variance on performance 

estimators. The paper presented changes to simulation methodology to 

increase the credibility of the measures of the performance and gain deeper 

insight into the behaviour of the system. This work helped in getting nearer 

to the advancement of simulation analysis of queuing systems from both 

theoretical and practical points of view. Almeida et al. (2020) studied 

optimization, performance evaluation, and modelling for queuing systems 

through simulations and other statistical methods. Their study primarily 

focused on improving the reliability of performance indices, such as waiting 

time and the number of customers in the queue, by using innovative 

simulations. They attempted to determine how various parameters affect the 

system's performance and explored methods to increase the efficiency of 

queuing systems through optimal estimation and validation of the models. 

The paper also focused on real-life consequences and discussed 

recommendations for improving the layout of the system and distribution of 

resources when outcomes of the given simulation are considered. They 

contributed to the advancement of theoretical analysis and the practical 

implementation of solutions to enhance queuing systems. Das and 

Choudhury (2021) concentrated on determining a utilization factor for a 

power supply queuing model using the MLE and Bayesian methods. In the 

paper, one of the key characteristics, the utilization factor, was addressed in 

an attempt at creating estimators for it because it is essential to evaluating 

the capacity and availability of power supply systems. MLE and Bayesian 

estimators were compared in their efficiency; the authors looked at the 

effectiveness of both these methods. Most recently, Dutta and Choudhury 

(2023) derived some classical estimator of traffic intensity of M/M/1 queue 

system. In the present study, we introduce a new frequentist estimator for 

traffic intensity in the M/M/1 queuing system. We examined the sampling 

distribution of the estimator as well as its properties. Our estimator is 

appealing due to its desirable properties. We have shown how it can be 

applied to test hypotheses. We have constructed a confidence interval and a 

maximum likelihood estimator. A comparison is made with a few similar 

estimators. 
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2. Description of the M/M/1 model 

In this model, we assume that the customers arriving at a queuing 

system are characterized by a Poisson distribution with a parameter λ. 
Because of the independent increment property of the Poisson process, the 

inter arrival times are independent random variables having an exponential 

distribution and the same rate λ. The system consists of the single server, 
while the service time for each customer is also independent and has an 

exponential distribution with the rate of μ. The number of customers is not 
restricted, and anyone can join the queue; the service is on a first-come, 

first-served basis. On the same note, the calling population has been 

assumed to be infinite. 

The traffic intensity (ρ) is one of the most important parameters of the 
M/M/1 queuing model, which is defined as the ratio of the arrival rate (λ) to 
the service rate (μ). The traffic intensity must be less than one. “Assuming 

equilibrium is very frequent in queuing theory” by Armero and Bayarri 

(1999). If the traffic intensity exceeds one, it will lead to an uncontrollable 

situation in the queue length. Therefore, it is important that the condition 

λ<μ holds, which is necessary and sufficient for a stable queue. As the 
number of customers grows indefinitely, the restriction of ρ<1 prevents the 
queue length from exponentially increasing. 

When the system fails to meet this condition, the operation manager(s) often 

make adjustments to prevent the queue from growing infinitely. This, in 

turn, guarantees that the restriction on traffic intensity is satisfied. To 

analyse queuing situations related to real life, different features are 

computed to check the effectiveness of the insight of the queuing system; 

these features are known as measures of performance of the queuing 

system. In general, there are three types of performance measures, viz., (i) 

number of customers currently in the waiting line or number of customers 

ongoing in the system, (ii) number of customers waiting in the system or 

queue, and (iii) an identifier of the server’s state or time during which the 

server may not be useful. “Since most queuing systems have stochastic 

elements, these measures are often random variables, so their probability 

distributions—or at least their expected values—are sought” by Shortle et al. 

(2018). The following are the widely used measures of performance in the 

M/M/1 model: 

 

(i) Average system size, 𝐿𝑠 = 𝜌1−𝜌 

(ii) Average queue size, 𝐿𝑞 = 𝜌21−𝜌 

(iii) Average waiting time in the system, 𝑊𝑠 = 1𝜇(1−𝜌) 
(iv) Average waiting time in the queue, 𝑊𝑞 = 𝜌𝜇(1−𝜌) 
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(v) Traffic intensity, 𝜌 = 𝜆𝜇 

 

3. Derivation of a statistic and its distribution: 

Consider that we are observing the two data sets: The model incorporates 

two separate environments for the two processes; the arrival process and the 

service process. The random variable x depicts the interarrival time with an 

exponential distribution and the rate parameter given by λ, while the 
random variable y depicts the service time with an exponential distribution 

and the rate parameter given by µ. Let a random sample 𝑥1, 𝑥2, … , 𝑥𝑚of m 

inter-arrival times have been taken from the distribution of x, and a random 

sample 𝑦1, 𝑦, … , 𝑦𝑛 of n service times have been taken from the distribution of 

y.  

Now, let us define 𝑢1 = ∑ 𝑥𝑖 𝑚𝑖=1 and 𝑢2 = ∑ 𝑦𝑗 𝑛𝑗=1  then 𝑢1~ γ (𝑚, λ)and 𝑢2~ γ (𝑛, μ), by Feller (1950) 

Due to the independence of inter-arrival times from service times, we 

assume that the two samples are independent of each other, and hence 𝑢1 

and 𝑢2 are also independent.  

The joint pdf of 𝑢1 and 𝑢2 is as follows 𝑓1(𝑢1, 𝑢2) = 𝜆𝑚
Γ𝑚 𝑒−𝜆𝑢1𝑢1𝑚−1 𝜇𝑛

Γ𝑛 𝑒−𝜇𝑢2𝑢2𝑛−1,      𝑢1 ≥ 0, 𝑢2 ≥ 0 

 Now, consider the statistic, 𝑤 = 𝑢1𝑢1+𝑢2 and 𝑧 = (𝑢1 + 𝑢2) 
Now, Jacobian of the transformation is given by 

𝐽 = |𝜕𝑢1𝜕𝑤 𝜕𝑢2𝜕𝑤𝜕𝑢1𝜕𝑧 𝜕𝑢2𝜕𝑧 | = 𝑧 

|𝐽| = 𝑧 

Therefore, the joint pdf of w and z is given by 𝑓2(𝑤, 𝑧) = 𝜆𝑚
Γ𝑚 𝑒−𝜆𝑤𝑧(𝑤𝑧)𝑚−1 𝜇𝑛

Γ𝑛 𝑒−𝜇(1−𝑤)𝑧[(1 − 𝑤)𝑧]𝑛−1𝑧                 = 𝜆𝑚
Γ𝑚 𝜇𝑛

Γ𝑛 𝑒−[𝜆𝜇𝑤+(1−𝑤)]𝜇𝑧𝑤𝑚−1(1 − 𝑤)𝑛−1𝑧𝑚+𝑛−1,   0 ≤ 𝑤 ≤ 1, 𝑧 ≥ 0 (1) 

Integrating equation (1) with respect to z, we get 𝑓(𝑤) = 𝜆𝑚
Γ𝑚 𝜇𝑛

Γ𝑛 𝑤𝑚−1(1 − 𝑤)𝑛−1[𝜆𝜇 𝑤 + (1 − 𝑤)]𝑚+𝑛 𝜇𝑚+𝑛 

         = 𝜌𝑚𝑤𝑚−1(1−𝑤)𝑛−1𝛽(𝑚,𝑛)(1−(1−𝜌)𝑤)𝑚+𝑛  ,    0 ≤ 𝑤 ≤ 1,   0 <  𝜌 (= 𝜆𝜇) < 1    (2) 

which is the 𝐺3𝐵(𝑚, 𝑛, 𝜌) distribution by Chen and Novick (1984) 
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4. An expression 

For 𝐺3𝐵(𝑚, 𝑛, 𝜌), we determine the followings 𝐸(𝑊𝑟) = 𝜌𝑚𝛽(𝑚,𝑛) ∫ 𝑤𝑚+𝑟−1(1−𝑤)𝑛−1(1−(1−𝜌)𝑤)𝑚+𝑛10 𝑑𝑤, 𝑚 + 𝑟 > 0 = 𝜌𝑚𝛽(𝑚,𝑛) 𝛽(𝑚 + 𝑟, 𝑛)2F1(𝑚 + 𝑟, 𝑚 + 𝑛; 𝑚 + 𝑛 + 𝑟; 1 − 𝜌)   (3) 

where 2F1(𝑏, 𝑐; 𝑑; 𝛿) = 1𝛽(𝑏,𝑑−𝑏) ∫ 𝑧𝑏−1(1−𝑧)𝑏−𝑑−1(1−𝛿𝑧)𝑐 𝑑𝑧10  is the Euler integral for 

hypergeometric function by Exton (1976). 

“The Euler integral is unchanged by the transformations” by Exton (1976) 

Therefore, by applying Euler transformations 

 2F1(𝑏, 𝑐; 𝑑; 𝛿) = (1 − 𝛿)𝑑−𝑏−𝑐
2F1(𝑑 − 𝑏, 𝑑 − 𝑐; 𝑑; 𝛿)by Chen and Novick (1984), 

we get 𝐸(𝑊𝑟) = Γ(𝑚+𝑛)Γ(𝑚+𝑟)
Γ(𝑚)Γ(𝑚+𝑛+𝑟) 2F1(𝑛, 𝑟; 𝑚 + 𝑛 + 𝑟; 1 − 𝜌) for 𝜌 < 1    (4) 

For large m & n by Chen and Novick (1984) 

2F1(𝑛, 𝑟; 𝑚 + 𝑛 + 𝑟; 1 − 𝜌) approaches to( 𝑚+𝑛𝑚+𝑛𝜌)𝑟
     

 (5) 

Therefore, using equation (4)& (5),we obtain 𝐸(𝑊𝑟) = Γ(𝑚+𝑛)Γ(𝑚+𝑟)
Γ(𝑚)Γ(𝑚+𝑛+𝑟) ( 𝑚+𝑛𝑚+𝑛𝜌)𝑟

        (6) 

In particular, taking 𝑟 = 1, we get  

the mean of the G3B distribution is 
11+ 𝑛𝑚𝜌. 

Now, an unbiased estimator can be constructed for𝜌. 

Again, taking𝑟 = −1 in (6), we get 𝐸 ( 1𝑊) = (𝑚 + 𝑛 − 1)(𝑚 + 𝑛𝜌)(𝑚 − 1)(𝑚 + 𝑛)  

which give us  𝐸 ((𝑚−1)(𝑚+𝑛)𝑛(𝑚+𝑛−1)𝑊 − 𝑚𝑛 ) = 𝜌      

Therefore, [(𝑚−1)(𝑚+𝑛)𝑛(𝑚+𝑛−1)𝑊 − 𝑚𝑛 ] is an unbiased estimator of 𝜌.   

  (7) 

Again,taking𝑟 = −2 in (6), after some simple algebra, we obtain 𝑉𝑎𝑟 ((𝑚 − 1)(𝑚 + 𝑛)𝑛(𝑚 + 𝑛 − 1)𝑊 − 𝑚𝑛 ) = (𝑚 + 𝑛𝜌)2𝑛(𝑚 + 𝑛 − 1)(𝑚 − 2) 
Now, 𝑉𝑎𝑟 ((𝑚−1)(𝑚+𝑛)𝑛(𝑚+𝑛−1)𝑊 − 𝑚𝑛 ) → 0 𝑎𝑠 𝑚 → ∞, 𝑛 → ∞     

  

which shows that [(𝑚−1)(𝑚+𝑛)𝑛(𝑚+𝑛−1)𝑊 − 𝑚𝑛 ] is a consistent estimator of 𝜌. 

Again from (2), we have 𝑓(𝑤) = 𝜌𝑚𝑤𝑚−1(1 − 𝑤)𝑛−1𝛽(𝑚, 𝑛)(1 − (1 − 𝜌)𝑤)𝑚+𝑛 , 0 ≤ 𝑤 ≤ 1     = 𝑔(𝑡(𝑤), 𝜌)ℎ(𝑤) 
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Consequently, by applying the Fisher-Neyman Factorization theorem, t(w) is 

identified as a sufficient estimator for ρ, namely,[(𝑚−1)(𝑚+𝑛)𝑛(𝑚+𝑛−1)𝑊 − 𝑚𝑛 ]functions as 

a sufficient estimate of ρ. 
Our estimator is attractive due to its impartial nature, consistency, and 

sufficiency. It satisfies three characteristics of an effective estimator.We have 

noticed that our estimator is appealing, as it is unbiased as well as 

consistent and sufficient. That is, it fulfils three properties of a good 

estimator. 

 

5. Testing of Hypothesis of 𝝆 

Here, we now develop a procedure for testing the hypothesis about𝜌. 

For this purpose, we use the probability density function from equation (2) 

as given below: 𝑓(𝑤) = 𝜌𝑚𝑤𝑚−1(1 − 𝑤)𝑛−1𝛽(𝑚, 𝑛)(1 − (1 − 𝜌)𝑤)𝑚+𝑛 , 0 ≤ 𝑤 ≤ 1 

Let 𝑤 =  𝑚𝑚+𝑛𝑡 ∴ 𝑓(𝑡) = 𝜌𝑚 𝑛𝑚( 𝑚𝑚+𝑛𝑡)𝑚+1(1− 𝑚𝑚+𝑛𝑡)𝑛−1𝛽(𝑚,𝑛)(1−(1−𝜌) 𝑚𝑚+𝑛𝑡)𝑚+𝑛 , 𝑡 ≥ 0       (8) 

Now, we test𝐻0: 𝜌 = 𝜌0 against𝐻1: 𝜌 = 𝜌1 

Let us suppose that we try to develop an α-level critical region by applying 

NP lemma (Neyman-Pearson), the most powerful critical region (MPCR), 

given by 𝑓(𝑡, 𝜌1)𝑓(𝑡, 𝜌0) > 𝑐 (𝑠𝑎𝑦) => (𝜌1𝜌0)𝑚 (𝑛𝑡+𝑚𝜌0𝑛𝑡+𝑚𝜌1)𝑚+𝑛 > 𝑐, using equation (8) 

=> 𝑛𝑡+𝑚𝜌0𝑛𝑡+𝑚𝜌1 > ( 𝑐(𝜌1𝜌0)𝑚)−(𝑚+𝑛) = 𝑐1(say) 

Case I. If 𝜌1 > 𝜌0 then 𝑛𝑡 + 𝑚𝜌0 > 𝑐1(𝑛𝑡 + 𝑚𝜌1) => 𝑡 > 𝑚(𝑐1𝜌1 − 𝜌0)𝑛(1 − 𝑐1) = 𝑘1(𝑠𝑎𝑦) 
Thus, the critical region is 𝑇 = (𝑡: 𝑡 > 𝑘1) 
The constants 𝑘1 are chosen in such a way that the size of the critical region 

equals 𝛼. 
i.e., 𝑃(𝑡 ∈ 𝑇|𝐻0) = 𝛼 => 𝑃𝐻0(𝑡 > 𝑘1) = 𝛼 

=> ∫ 𝜌0𝑚 𝑛𝑚 ( 𝑚𝑚+𝑛𝑡)𝑚+1 (1 − 𝑚𝑚+𝑛𝑡)𝑛−1𝛽(𝑚, 𝑛)(1 − (1 − 𝜌0) 𝑚𝑚+𝑛𝑡)𝑚+𝑛
∞

𝑘1 𝑑𝑡 = 𝛼 
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=> ∫ ( 𝑛𝑚)𝑛 𝑡𝑛−1𝛽(𝑚, 𝑛)𝜌0𝑛(1 + 𝑛𝑡𝑚𝜌0)𝑚+𝑛
∞

𝑘1 𝑑𝑡 = 𝛼 

Taking 
𝑛𝑡𝑚𝜌0 = 𝑠, we get => ∫ 𝑠𝑛−1𝛽(𝑚,𝑛)(1+𝑠)𝑚+𝑛∞𝑛𝑘1𝑚𝜌0 𝑑𝑡 = 𝛼         (9) 

an incomplete beta integral, and one can solve it byMazumdar and 

Bhattacharjee (1973) 

Case II. If 𝜌1 < 𝜌0 then 𝑛𝑡 + 𝑚𝜌0 < 𝑐2(𝑛𝑡 + 𝑚𝜌1) => 𝑡 < 𝑘2(𝑠𝑎𝑦) 
Thus, the critical region is 𝑇1 = (𝑡: 𝑡 < 𝑘2) 
Similarly, one can calculated 𝑘2from (10) as given below by Mazumdar and 

Bhattacharjee (1973). 

 ∫ 𝑠𝑛−1𝛽(𝑚,𝑛)(1+𝑠)𝑚+𝑛𝑛𝑘2𝑚𝜌00 𝑑𝑡 = 𝛼        (10) 

 

6. Confidence interval of 𝝆 

Let 𝛾1 𝑎𝑛𝑑 𝛾2 be the lower and the upper limits, respectively, for the estimator 

given in (7);then 𝛾1 𝑎𝑛𝑑 𝛾2 can be determined by using the size condition.The 

equations for the purpose aregiven below: 𝑃(𝑡 < 𝛾1) = 𝛼2  𝑎𝑛𝑑 𝑃(𝑡 > 𝛾2) = 𝛼2 

Now, 𝑃(𝑡 < 𝛾1) = 𝛼2 => ∫ 𝜌0𝑚 𝑛𝑚( 𝑚𝑚+𝑛𝑡)𝑚+1(1− 𝑚𝑚+𝑛𝑡)𝑛−1𝛽(𝑚,𝑛)(1−(1−𝜌0) 𝑚𝑚+𝑛𝑡)𝑚+𝑛𝛾10 𝑑𝑡 = 𝛼2 

=> ∫ 𝑠𝑛−1𝛽(𝑚,𝑛)(1+𝑠)𝑚+𝑛𝑛𝛾1𝑚𝜌00 𝑑𝑡 = 𝛼2       (11) 

and 𝑃(𝑡 > 𝛾2) = 𝛼2 => ∫ 𝜌0𝑚 𝑛𝑚( 𝑚𝑚+𝑛𝑡)𝑚+1(1− 𝑚𝑚+𝑛𝑡)𝑛−1𝛽(𝑚,𝑛)(1−(1−𝜌0) 𝑚𝑚+𝑛𝑡)𝑚+𝑛∞𝛾2 𝑑𝑡 = 𝛼2 => ∫ 𝑠𝑛−1𝛽(𝑚,𝑛)(1+𝑠)𝑚+𝑛∞𝑛𝛾2𝑚𝜌0 𝑑𝑡 = 𝛼2       (12) 

The incomplete beta integrals (11) and (12) can be solved by Mazumdar and 

Bhattacharjee (1973). 

 

7. Maximum likelihood estimator (MLE) of ρ 

Given the 𝐺3𝐵(𝑚, 𝑛, 𝜌) distribution, for a sample {𝑤1, 𝑤2, … , 𝑤𝑘} the likelihood 

function is 𝐿 = ∏ 𝑓(𝑤𝑙𝑘
𝑙=1 ) = {𝛽(𝑚, 𝑛)}−𝑘𝜌𝑚𝑘 ∏[𝑤𝑙𝑚−1(1 − 𝑤𝑙)𝑛−1(1 − (1 − 𝜌)𝑤𝑙)−(𝑚+𝑛)]𝑘

𝑙=1  
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∴ 𝑙𝑜𝑔𝐿 = −𝑘𝑙𝑜𝑔{𝛽(𝑚, 𝑛)} + 𝑚𝑘𝑙𝑜𝑔(𝜌) + (𝑚 − 1) ∑ log(𝑤𝑙)𝑘𝑙=1 + (𝑛 − 1) ∑ log(1 −𝑘𝑙=1𝑤𝑙) − (𝑚 + 𝑛) ∑ log(1 − (1 − 𝜌)𝑤𝑙)𝑘𝑙=1  (13) 

Differentiating (13) with respect to𝜌, and then equating to zero, we get 𝑘𝑚𝜌 − (𝑚 + 𝑛) ∑ 𝑤𝑙(1−[1−𝜌]𝑤𝑙)𝑘𝑙=1 = 0       

=> 𝑘𝑚(𝑚 + 𝑛)𝜌 = ∑ 𝑤𝑙[1 − (1 − 𝜌)𝑤𝑙]−1𝑘
𝑙=1          => 𝑘𝑚(𝑚+𝑛)𝜌 = ∑ 𝑤𝑙𝑘𝑙=1 [1 + (1 − 𝜌)𝑤𝑙], ignoring higher order, 

 since 0 ≤ 𝑤𝑙 ≤ 1        𝑎𝑛𝑑 0 < (1 − 𝜌) < 1.         => (∑ 𝑤𝑙2𝑘
𝑙=1 ) 𝜌2 − (∑(𝑤𝑙 + 𝑤𝑙2)𝑘

𝑙=1 ) 𝜌 + 𝑘𝑚(𝑚 + 𝑛) = 0 

       => 𝜌 = [∑ (𝑤𝑙 + 𝑤𝑙2)𝑘𝑙=1 ± √((∑ (𝑤𝑙 + 𝑤𝑙2)𝑘𝑙=1 )2 − 4 𝑘𝑚(𝑚+𝑛) (∑ 𝑤𝑙2𝑘𝑙=1 ))]2(∑ 𝑤𝑙2𝑘𝑙=1 )  

Since 0 ≤ 𝑤𝑙 ≤ 1 𝑎𝑛𝑑 0 < 𝜌 < 1, therefore,   

𝜌 = [∑ (𝑤𝑙+𝑤𝑙2)𝑘𝑙=1 −√((∑ (𝑤𝑙+𝑤𝑙2)𝑘𝑙=1 )2−4 𝑘𝑚(𝑚+𝑛)(∑ 𝑤𝑙2𝑘𝑙=1 ))]
2(∑ 𝑤𝑙2𝑘𝑙=1 )   

        Thus, the MLEfor𝜌 is given by 

𝜌̂ = [∑ (𝑤𝑙+𝑤𝑙2)𝑘𝑙=1 −√((∑ (𝑤𝑙+𝑤𝑙2)𝑘𝑙=1 )2−4 𝑘𝑚(𝑚+𝑛)(∑ 𝑤𝑙2𝑘𝑙=1 ))]
2(∑ 𝑤𝑙2𝑘𝑙=1 )     (14) 

 

8. Simulations 

Simulation is done using R programming and simulated 5000 times. 

Table 1: Estimates of ρ using unbiased estimator with MSE (in 

parenthesis) for different sample sizes. 

True 

valu

e of 

ρ 

Size of the sample 

30 50 100 150 250 𝜌= 0.5 

MSE 

0.4920939 

(0.0185339) 

0.4951609 

(0.01045644

) 

0.4965752 

(0.005084875

) 

0.4983305 

(0.003357661

) 

0.4996641 

(0.001927169

) 𝜌= 0.7 

MSE 

0.6957111 

(0.03622232

) 

0.6972657 

(0.0204562) 

0.6972154 

(0.009951119

) 

0.6990005 

(0.006576552

) 

0.7003314 

(0.003777141

) 𝜌= 0.9 

MSE 

0.8993283 

(0.05984775

) 

0.8993705 

(0.03380339

) 

0.8978555 

(0.01644159) 

0.8996704 

(0.0108699) 

0.9009986 

(0.006244661

) 
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Figure 1. MSE vs Sample sizes for different values of ρ=0.5, 0.7, 0.9 using 

unbiased estimator of ρ. 
 

Table 2: Estimates of ρ using maximum likelihood estimator with 
MSE (in parenthesis) for different sample sizes. 

True 

valu

e of 

ρ 

Size of the sample 

30 50 100 150 𝜌= 0.5 

MSE 

0.5002767 

(0.0000680605

5) 

0.5000227 

(0.0000404523

6) 

0.5000617 

(0.0000199188

3) 

0.5000147 

(0.0000135629

1) 𝜌= 0.7 

MSE 

0.7003873 

(0.0001334015) 

0.7000314 

(0.0000792884

3) 

0.7000861 

(0.0000390422

8) 

0.7000202 

(0.0000265841

7) 𝜌= 0.9 

MSE 

0.9004986 

(0.0002205217) 

0.9000410 

(0.0001310686) 

0.9001114 

(0.0000645393

9) 

0.9000267 

(0.0000439452

6) 
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Figure 2. Estimated value of ρ using ML estimator vs sample size for ρ=0.5, 

0.7 
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Figure 3. Estimated value of ρ using maximum likelihood estimator vs 

sample size for ρ=0.9, and MSE vs Sample size for different values of 

ρ=0.5, 0.7, 0.9 using ML estimator of ρ. 
From Table 1, Table 2, Figure 1, Figure 2 and Figure 3, it is seen that 

as the sample size increases unbiased estimates and ML estimates of 

ρ improves and mean square errors decreases. 
 

9. Comparisons of our ML estimator with others 

We compared our maximum likelihood estimator with the ML 

estimator by Chowdhury and Mukherjee (2013). The ML estimator of ρ 
by Chowdhury and Mukherjee (2013) is given by 𝜌̂𝑚𝑙𝑒 = 𝐵 ± √𝐵2 − 4𝐴𝐶2𝐴  

where 𝐴 = 𝑁 + 𝑛00 + 𝑛10 − 𝑛0 − 1 𝐵 = 𝑁 + ∑ ∑ (𝑗 − 𝑖 − 1)𝑛𝑖𝑗∞

𝑗=𝑖−1
∞

𝑖=2 + 𝑛00 + 𝑛10 + ∑ 𝑗(𝑛0𝑗 + 𝑛1𝑗)∞

𝑗=0 + 1 

𝐶 = 𝑛0 + ∑ 𝑗∞

𝑗=0 (𝑛0𝑗 + 𝑛1𝑗) + ∑ ∑ (𝑗 − 𝑖 − 1)∞

𝑗=𝑖−1
∞

𝑖=2 𝑛𝑖𝑗 
𝑁 = ∑ ∑ 𝑛𝑖𝑗∞

𝑗=𝑖−1
∞

𝑖=2 , 𝑛00 = ∑ 𝑛0𝑗∞

𝑗=0 , 𝑛10 = ∑ 𝑛1𝑗∞

𝑗=0  

and 𝑛𝑖𝑗, the observed number of transitions from state i to state j in Nt. 

For comparison, we followed the same simulation procedure that was 

outlined by Chowdhury and Mukherjee (2013) and simulated 1000 

times to get RMSE. Estimated values of our maximum likelihood 

estimator are given in Table 3  

Table 3: Estimates of ρ using maximum likelihood estimator with 
RMSE (in parenthesis) for sample sizes (30, 50, 100) 

True 

value 

of ρ 

Sample size 

Our estimator 
Estimator of Chowdhury and 

Mukherjee 

30 50 100 30 50 100 𝜌 = 0.5 

RMSE 

0.5006402 

(0.008063451) 

0.5001845 

(0.006416161) 

0.5001406 

(0.004554429) 

0.4823 

(0.0234151) 

0.4941 

(0.0169929) 

0.4956 

(0.0102145) 𝜌 = 0.7 

RMSE 

0.7008962 

(0.011288959) 

0.7002579 

(0.008982706) 

0.7001966 

(0.006376323) 

0.6739 

(0.0314587) 

0.6812 

(0.0214703) 

0.6998 

(0.0154366) 𝜌 = 0.9 

RMSE 

0.9011529 

(0.01451443) 

0.9003322 

(0.011549211) 

0.9002534 

(0.008198148) 

0.8688 

(0.0245871) 

0.8809 

(0.0124587) 

0.8912 

(0.0095487) 
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Here, we compared our MLE of ρ with the MLE of ρ by Basak and 
Choudhury (2018). They obtained the MLE of ρ as given below. 𝜌̂𝑀𝐿 = √𝑛22 + 4(𝑦 + 2𝑛)(𝑦 + 𝑛2) − 𝑛22(𝑦 + 2𝑛)  

where 𝑦 = ∑ 𝑥𝑖𝑛2𝑖=1 , n the observed number of M/M/1 queues, 𝑥𝑖 non-empty 

queue size of 𝑛2 observations. We adhered strictly to the technique defined 

by Basak and Choudhury (2018). The simulation procedure was repeated 

5000 times to MSE, MSE as carried out by Basak and Choudhury (2018). 

Table 4: Estimates of ρ using maximum likelihood estimator with MSE 
(in parenthesis) for sample sizes (30, 50, 100) by(14) 

True 

value 

of ρ 

Sample size 

Our Estimator 
Estimator of Basak and 

Choudhury 

30 50 100 30 50 100 𝜌= 0.5 

MSE 

0.5002356 

(0.000103) 

0.5000227 

(0.0000405) 

0.5000617 

(0.0000199) 

0.480953 

(0.008773) 

0.492379 

(0.00295) 

0.496542 

(0.001402) 𝜌= 0.8 

MSE 

0.800377 

(0.000263) 

0.800036 

(0.000104) 

0.8000985 

(0.0000510) 

0.789904 

(0.00229) 

0.795285 

(0.000815) 

0.797708 

(0.000350) 𝜌= 0.9 

MSE 

0.9004245 

(0.000333) 

0.900041 

(0.000131) 

0.9001114 

(0.0000645) 

0.887786 

(0.000698) 

0.890558 

(0.000276) 

0.892443 

(0.000169) 

 

From Tables 3 and 4, it is evident that our maximum likelihood 

estimator provides better estimates compared to those of Chowdhury 

and Mukherjee (2013) and Basak and Choudhury (2018). Additionally, 

as the sample size increases, the RMSE decreases more significantly 

than in Chowdhury and Mukherjee (2013), and the MSE decreases 

more substantially than in Basak and Choudhury (2018). Based on 

these results we conclude that our maximum likelihood estimator 

provides estimates of traffic intensity that are closest to the actual 

values, making it superior to those available in the literature. This 

highlights a key advantage of our estimator. 

 

10. Conclusions 

We presented two estimators for the traffic intensity in an M/M/1 

queuing system: Two of the estimators include an unbiased estimator 

and a maximum likelihood (ML) estimator. It can be seen that the 

unbiased estimator possesses some attributes that are characteristic 

of a good estimator. A confidence interval was built, and the most 
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powerful critical region for the estimator of traffic intensity was 

developed. The simulation procedure was adopted in order to compare 

the newly developed ML estimator of traffic intensity with those 

existing in the literature, where it was revealed that the new estimator 

performs better than the existing ones. 
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