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Abstract: In studying queuing systems, the main feature that reflects the
system is the performance measures. Traffic intensity is considered one of the
most important performance measures in the M/M/ 1 queuing system. In the
present study we introduce a new frequents estimator for traffic intensity and
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confidence intervals and maximum likelihood estimators. We also performed a
comparison with a few similar estimators of other authors.
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1. Introduction

The principle of queuing theory addresses the issue of overcrowding. It
develops models to predict the behaviour of systems that strive to provide
services to user groups. In this research work, we have taken the M/M/1
single-server system. The M/M/1 system receives customers one by one,
forming a single queue for the entire system. For a queuing practitioner, the
knowledge of the model's numerical values is critical. However, various
factors such as time constraints and the need for accurate estimates can
easily limit this knowledge. This chapter aims to provide a detailed
discussion of these factors and their related procedures. In M/M/1, one of
the most important performance measures is the traffic intensity denoted by
p and expressed as the ratio of the average service time to the average inter-
arrival time. As stated by Clarke (1957), a technique for approximating the
distribution of the maximum queue length in a queuing system was
presented. The paper established a mathematical platform for analysing
queuing behaviour in a steady-state regime where one interest was the
probability distribution of the queue length. Clarke’s contributions provided
an insight into the maximum queue size distribution, which has a great
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impact on systems performance, especially in conditions where capacity
issues or limitation of resources have influence. This research attempts to
bring to the field ideas concerning queuing length distribution in various
practices, thereby contributing to the initial development of queuing theory.
Muddapur (1972) reviewed methods of statistics to first, test for performance
measures in queuing systems, and second, estimate the performance
measures. This work concentrated on the M/M/1 queue model and
analysed methods for obtaining an approximation of the queue size and time
for waiting. Muddapur proposed and evaluated different assessment models
to overcome problems related to the surety and effectiveness of the
procedures. The paper offered significant knowledge enhancements for
queuing system behaviour and allowed practical approaches for its
performance measurement and analysis. Schruben and Kulkarni (1982)
tried to establish the statistical properties of classical performance
estimators for M/M/1 queueing systems. However, they were able to
demonstrate that these simple estimators, like the mean queue length or the
waiting time, have substantial drawbacks, mainly because they presented
undefined SE. This phenomenon leads to unreliable and problematic
estimations of performance measures in steady-state simulation. Previous
work showed that there are such pathologic properties for queuing models
and that more suitable estimation methods have to be sought in order to
enhance the fidelity of performance predictions. McGrath and Singpurwalla
(1987) conducted a comprehensive review of performance analysis and
estimation in queues, utilizing Bayesian-based approaches. Their research
was mostly focused on how prior knowledge was incorporated into sample
information to improve estimation of the parameter as well as decision-
making under a queuing system. They employed Bayesian methods to
address issues such as reliability and the performance evaluation of system
measures. The paper also compares and contrasts the functionalities of the
two approaches, providing a brief overview of how helpful Bayesian inference
is for analysing queuing systems. Basawa and Prabhu (1988) analysed
stochastic processes for statistical inference, and this category includes
queuing systems. Their work also addressed parametric and non-parametric
approaches to estimation of the parameters of queues, especially concerning
M/G/1 and other generalized queues. In particular, they stressed the role of
the work with identifying proper and efficient estimators for these processes,
some of the concerns being stationary, ergodicity, and the use of the
likelihood function. They did enormous work on the theory of statistical
inference in queuing models, providing easy methods of solving real-world
problems. In the study, Armero and Bayari (1994) have also covered the
applicability of statistical methods for both analysis and estimation of the
parameters of the queuing system. Their major developments in their study
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were both to present and evaluate estimators for a number of performance
indices, such as queues and waiting time in several queuing systems. They
also provided approaches for how one can deal with issues that may arise
with regard to bias and efficiency of the estimator when used in queuing
systems that possess some level of complexity or are formulated in a non-
conventional way. As stated in the paper, the identification of a proper
method of estimation will improve the understanding of operation and
control on queuing systems; thus, it has facilitated advancement in the field
of queuing theory and application. Srinivas, Subba Rao, and Kale (2011)
have mainly concentrated on the methods of statistical analysis for queuing.
More precisely, the paper focused on estimating system parameters in
queuing processes using simulation-based methods. They outlined methods
to enhance the accuracy and reliability of estimators for queuing models, as
well as the challenges in estimating model parameters when the system
behaviour is complex or when the arrival distribution is unconventional.
They brought new methods in simulation analysis, which provided ideas for
solving practical issues in queuing systems, like evaluating performance and
allocation of resources efficaciously. Chowdhury and Mukherjee (2013) have
worked out maximum likelihood estimator (MLE) as well as Bayes estimator
of traffic intensity in an M/M/1/x queuing model in equilibrium based on
supported range of number within the queue at ordered departure epochs.
They conjointly derived estimates of some functions of traffic intensity which
offer measures of effectiveness of the queue and a comprehensive simulation
study beginning with the transition likelihood matrix.

To understand the future behaviour of queuing systems, Srinivas and
Udupa (2014) presented an analytical comparison of simulation techniques
to measure and predict the output from queuing systems. They
concentrated on the heuristics generated in overhauling the performance
estimators as a way of reducing variance in the system, especially within the
queuing networks. They looked at ways to diminish the effects of the initial
transient conditions and increase the accuracy of steady-state evaluations.
Furthermore, the study focused on the issues of using simple arrival and
service rates to model real-life systems where rates are random, different,
and constant and put forward the strategies of improved system planning
and resource management. This paper contributed to the improvement of
simulation models necessary for queuing system analysis. Choudhury and
Basak (2018) specifically focused on issues concerning queuing systems,
with special emphasis on performance evaluation in systems that have non-
orthodox arrival and service time processes. They looked at different queue
arrangements and then imposed sophisticated stochastic methods to
analyse and forecast the expected wait time, system percentage, and
probability distribution of the queues. In the paper, the need to capture
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such realities as time-varying rates and unsteady service characteristics was
well pointed out. They used the ideas, which improved the more general and
real-life queuing models as well as extended queuing theories. Suyama,
Quinino, and Cruz (2018) studied the performance and analysis of queuing
systems using simulation-based research. Their work was centred around
designing and testing ways in which the performance indices can be
predicted with a high degree of precision given that they exist in demanding
queuing systems. They classified different simulation methods for working
as follows for evaluating factors such as bias and variance on performance
estimators. The paper presented changes to simulation methodology to
increase the credibility of the measures of the performance and gain deeper
insight into the behaviour of the system. This work helped in getting nearer
to the advancement of simulation analysis of queuing systems from both
theoretical and practical points of view. Almeida et al. (2020) studied
optimization, performance evaluation, and modelling for queuing systems
through simulations and other statistical methods. Their study primarily
focused on improving the reliability of performance indices, such as waiting
time and the number of customers in the queue, by using innovative
simulations. They attempted to determine how various parameters affect the
system's performance and explored methods to increase the efficiency of
queuing systems through optimal estimation and validation of the models.
The paper also focused on real-life consequences and discussed
recommendations for improving the layout of the system and distribution of
resources when outcomes of the given simulation are considered. They
contributed to the advancement of theoretical analysis and the practical
implementation of solutions to enhance queuing systems. Das and
Choudhury (2021) concentrated on determining a utilization factor for a
power supply queuing model using the MLE and Bayesian methods. In the
paper, one of the key characteristics, the utilization factor, was addressed in
an attempt at creating estimators for it because it is essential to evaluating
the capacity and availability of power supply systems. MLE and Bayesian
estimators were compared in their efficiency; the authors looked at the
effectiveness of both these methods. Most recently, Dutta and Choudhury
(2023) derived some classical estimator of traffic intensity of M/M/1 queue
system. In the present study, we introduce a new frequentist estimator for
traffic intensity in the M/M/1 queuing system. We examined the sampling
distribution of the estimator as well as its properties. Our estimator is
appealing due to its desirable properties. We have shown how it can be
applied to test hypotheses. We have constructed a confidence interval and a
maximum likelihood estimator. A comparison is made with a few similar
estimators.
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2. Description of the M/M/1 model

In this model, we assume that the customers arriving at a queuing
system are characterized by a Poisson distribution with a parameter A.
Because of the independent increment property of the Poisson process, the
inter arrival times are independent random variables having an exponential
distribution and the same rate A. The system consists of the single server,
while the service time for each customer is also independent and has an
exponential distribution with the rate of p. The number of customers is not
restricted, and anyone can join the queue; the service is on a first-come,
first-served basis. On the same note, the calling population has been
assumed to be infinite.

The traffic intensity (p) is one of the most important parameters of the
M/M/1 queuing model, which is defined as the ratio of the arrival rate (A) to
the service rate (p). The traffic intensity must be less than one. “Assuming
equilibrium is very frequent in queuing theory” by Armero and Bayarri
(1999). If the traffic intensity exceeds one, it will lead to an uncontrollable
situation in the queue length. Therefore, it is important that the condition
A<p holds, which is necessary and sufficient for a stable queue. As the
number of customers grows indefinitely, the restriction of p<1 prevents the
queue length from exponentially increasing.

When the system fails to meet this condition, the operation manager(s) often
make adjustments to prevent the queue from growing infinitely. This, in
turn, guarantees that the restriction on traffic intensity is satisfied. To
analyse queuing situations related to real life, different features are
computed to check the effectiveness of the insight of the queuing system,;
these features are known as measures of performance of the queuing
system. In general, there are three types of performance measures, viz., (i)
number of customers currently in the waiting line or number of customers
ongoing in the system, (ii) number of customers waiting in the system or
queue, and (iii) an identifier of the server’s state or time during which the
server may not be useful. “Since most queuing systems have stochastic
elements, these measures are often random variables, so their probability
distributions—or at least their expected values—are sought” by Shortle et al.
(2018). The following are the widely used measures of performance in the
M/M/1 model:

B

(i) Average system size, L =
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(i) Average queue size, L, =
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u(1-p)

(iii) Average waiting time in the system, W, =

(iv)  Average waiting time in the queue, W, =
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(v) Traffic intensity, p = %

3. Derivation of a statistic and its distribution:

Consider that we are observing the two data sets: The model incorporates
two separate environments for the two processes; the arrival process and the
service process. The random variable x depicts the interarrival time with an
exponential distribution and the rate parameter given by A, while the
random variable y depicts the service time with an exponential distribution
and the rate parameter given by u. Let a random sample xq,x,,...,x,,0f m
inter-arrival times have been taken from the distribution of X, and a random
sample y,,y, ..., ¥, of n service times have been taken from the distribution of
y.

Now, let us define w =3%Z;x;and wu,=37.;y; then wu~y(mAd)and
u,~y (n,1), by Feller (1950)

Due to the independence of inter-arrival times from service times, we
assume that the two samples are independent of each other, and hence u,
and u, are also independent.

The joint pdf of u; and u, is as follows

m n
_ M _
filug,up) = e Mg, m 1ﬁe Huzg,m=1 y, > 0,uy; >0
Now, consider the statistic, w = ulilu and z = (u; +u,)
1 2
Now, Jacobian of the transformation is given by
du, Ju,
_|ow ow]| _
G LT
dz 0z
I =z
Therefore, the joint pdf of w and z is given by

om 'un
fow,2) = T e (wz)™ L TR (1 = w)z]"

m n - & —_
_ )L_/,L_e [#w+(1 w)]#zwm—l(l _ W)n—lzm+n—1’ 0<w<1lz> 0(1)

I'mTIn
Integrating equation (1) with respect to z, we get
Am ‘un Wm_l(l _ W)n—l
fw) = e
[;w +(1- W)] pmEn

_ pmwm—l(l_w)n—l _ &
= e 0Sw <1, 0<p (_ H) <1 (2)

which is the G3B(m,n, p) distribution by Chen and Novick (1984)
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4. An expression

For G3B(m,n,p), we determine the followings
m m+r—1¢4 _.,\n—1
E(Wr) __P flw (1-w)

dw, m+r>0

:Bgrln)ﬁ(m+r'n)2Fl(m+T,m+n;m+n+r;1—P) (3)
b-1(q_,\b—-d-1
where 2Fi(b,c;d;8) = B(b;_b) folz ((11—522))C dz is the Euler integral for

hypergeometric function by Exton (1976).

“The Euler integral is unchanged by the transformations” by Exton (1976)
Therefore, by applying Euler transformations

2F1(b,c;d;8) = (1 —6)4P"%F1(d — b,d — c;d; 5)by Chen and Novick (1984),

we get
ry _ Tm+n)T(m+r)
E(W ) - r(m)I'(m+n+r)
For large m & n by Chen and Novick (1984)
m+n )r
m+np

JFiln,rm+n+r,1—p)forp<1 4)

oFi(n,r;m+n+r;1—p) approaches to(
(9

Therefore, using equation (4)& (5),we obtain

E(WT) = T(m+n)T(m+r) ( m+n )r

r(m)I'(m+n+r)
In particular, taking r = 1, we get

the mean of the G3B distribution is

(6)

m+np

1

T .
1+Ep

Now, an unbiased estimator can be constructed forp.
Again, takingr = —1 in (6), we get
1y (m+n—-1)(m+np)
E(W) T (m=1D(m+n)
(m—-1)(m+n) _ m) =p
n(m+n-1)w n

m=D(mtn) _ %] is an unbiased estimator of p.

which give us E (
Therefore, [

n(m+n-1)Ww

(7)
Again,takingr = —2 in (6), after some simple algebra, we obtain

v (m—1D(m+n) m\ (m + np)?
ar nm+n—-1DW n) nm+n-1)(m-2)
Now, Var(w—m) - 0asm - oo,n—>x©
n(m+n-1)wW
which shows that [w — E] is a consistent estimator of p.
n(m+n-1)Ww n

Again from (2), we have

pmwm (1 —w) L
p(mn)(1—-(1 —p)W)m+n'0 <w<l1
= g(t(w), p)h(w)

fw) =
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Consequently, by applying the Fisher-Neyman Factorization theorem, t(w) is
(m—-1)(m+n)

identified as a sufficient estimator for p, namely, (mn_DW

m .
;] functions as

a sufficient estimate of p.

Our estimator is attractive due to its impartial nature, consistency, and
sufficiency. It satisfies three characteristics of an effective estimator.We have
noticed that our estimator is appealing, as it is unbiased as well as
consistent and sufficient. That is, it fulfils three properties of a good
estimator.

5. Testing of Hypothesis of p

Here, we now develop a procedure for testing the hypothesis aboutp.
For this purpose, we use the probability density function from equation (2)
as given below:

pmwm—l(l _ W)n—l

FW) = Banma == pwymen 0 S W ST
Letw = —
m+nt )
f(t) — pmﬁ(m+nt) (1_m+nt) t 2 O (8)

B(mn)(1-(1-p)—ym+n
Now, we testH,: p = py againstH;:p = p;

Let us suppose that we try to develop an a-level critical region by applying
NP lemma (Neyman-Pearson), the most powerful critical region (MPCR),

given by

f(tl ,01)
> c (say)
f (& po) Y
m rnt+ m+n ) '
= (%) (ZHZZ:) > ¢, using equation (8)
—(m+n)
_ nt+mpe c _
== nt+mp, > ((&)m> = ¢4(say)
Po
Case I. If p; > p, then
m(cip; —
nt + mpy, > c;(nt + mpy) =>t > M = ky(say)
n(l—cy)

Thus, the critical region is T = (t:t > k;)

The constants k; are chosen in such a way that the size of the critical region
equals a.

i.e., P(tET|Hy) = a => Py (t > k) =

© mn( m m+1 _om n-1
—~ fpo m(m+nt) (1 m+nt) dt
B(m,n)(1 — (1 — py) ——)m+n

kq m+nt
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e
n 1 ym+
kq ,B(m, n)pO (1 + mpo)m n

dt =«

. nt
Taking e = 5,1 we get
0 Sn_
=> f%lo Ty At = @ 9)
an incomplete beta integral, and one can solve it byMazumdar and
Bhattacharjee (1973)
Case II. If p; < py then
nt + mpy < c;(nt + mp,) =>t < ky(say)
Thus, the critical region is T; = (t:t < k;)
Similarly, one can calculated k,from (10) as given below by Mazumdar and
Bhattacharjee (1973).

nk
Lr2 n—1

JI e dt = (10)

0  Bmn)(1+s)m+n

6. Confidence interval of p

Let y, and y, be the lower and the upper limits, respectively, for the estimator
given in (7);then y; and y, can be determined by using the size condition.The
equations for the purpose aregiven below:

a a
P(t<y,) = 5 and P(t > y,) =§

o) ()

N P =E= 170 m\m+nt m+nt =E

ow, P(E <) =3 => o mmi-ampom 4 = 3

=> f%—sn_l dt =2 (11)
0 B(mmn)(1+s)m+n 2

m+1 n-1
and P(t >y,) =2=> [ e M e dt ==

2 V2 Bmm)(1-(1-po)sis) ™™ 2

=> frp S ——dt =& (12)

p—_ B(mn)(1+s)m+n 2

The incomplete beta integrals (11) and (12) can be solved by Mazumdar and
Bhattacharjee (1973).

7. Maximum likelihood estimator (MLE) of p

Given the G3B(m,n,p) distribution, for a sample {w;,w,, ...,w;} the likelihood

function is
k

k
L= Jrom) = ammyom ] Jlwi=a - woria1 = (1 - pyw)-mem)
=1

=1
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« logL = —klog{B(m,n)} + mklog(p) + (m — 1) Xi=, log(w) + (n — 1) Xj~, log(1 -
wp) — (m+n) X log(1— (1 —p)w) (13

Differentiating (13) with respect top, and then equating to zero, we get
wi

km _ kK Wi _
(m+n) X, . =

p plwy)
km -
—_ (1 -1
=> s 2 will = (1= p)wi]
=> K =Yk  w [1+ (1 - p)w,], ignoring higher order,

(m+n)p
since0<w; <1 and0 < (1—p) <1.

k k
k
> (3wt o =Yoo+ A -

=1 =1

Yica(w +wi) + \/((2{(:1(% T w )) - 4(m+n) (1w ))

2(21 1Wi )

Since 0 <w; < 1and 0 < p < 1, therefore,

Z%(=1(WI+W12)_J<(Z;(=1(WZ+W )) 4(m+n)(21 Wi )
P 2 D) '
Thus, the MLEforp is given by
oy ()~ j((zl wrrw)) (sl wh) )
D == = 14
P 2T ) (14)
8. Simulations
Simulation is done using R programming and simulated 5000 times.
Table 1: Estimates of p using unbiased estimator with MSE (in
parenthesis) for different sample sizes.
True Size of the sample
valu
e of 30 50 100 150 250
P
p 0.4920939 0.4951609 0.4965752 0.4983305 0.4996641
=05 ’ (0.01045644 | (0.005084875 | (0.003357661 | (0.001927169
(0.0185339)
MSE ) ) ) )
p 0.6957111 0.6972657 0.6972154 0.6990005 0.7003314
= 0.7 | (0.03622232 ’ (0.009951119 | (0.006576552 | (0.003777141
(0.0204562)
MSE ) ) ) )
p 0.8993283 0.8993705 0.9009986
0.8978555 0.8996704
=0. . 477 . . 44661
M(S); (O 059)8 5| (0 033)80339 0.01644159) | (0.0108699) (0 006? 66
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Table 2: Estimates of p using maximum likelihood estimator with
MSE (in parenthesis) for different sample sizes.

True Size of the sample
valu
e of 30 50 100 150

P
p 0.5002767 0.5000227 0.5000617 0.5000147
= 0.5 | (0.0000680605 | (0.0000404523 | (0.0000199188 | (0.0000135629
MSE 5) 0) 3) 1)
P 0.7003873 0.7000314 0.7000861 0.7000202
= 0.7 (0.0001334015) (0.0000792884 | (0.0000390422 | (0.0000265841
MSE 3) 8) 7)
P 0.9004986 0.9000410 0.9001114 0.9000267
=09 (0.0000645393 | (0.0000439452
MSE (0.0002205217) | (0.0001310686) 9) 6)
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Estimated p vs. Sample Size
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Figure 2. Estimated value of p using ML estimator vs sample size for p=0.5,
0.7
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Figure 3. Estimated value of p using maximum likelihood estimator vs
sample size for p=0.9, and MSE vs Sample size for different values of
p=0.5, 0.7, 0.9 using ML estimator of p.

From Table 1, Table 2, Figure 1, Figure 2 and Figure 3, it is seen that
as the sample size increases unbiased estimates and ML estimates of
p improves and mean square errors decreases.

. Comparisons of our ML estimator with others

We compared our maximum likelihood estimator with the ML
estimator by Chowdhury and Mukherjee (2013). The ML estimator of p
by Chowdhury and Mukherjee (2013) is given by

A B ++B? — 4AC
pmle= 2A
WhereA —N+Tl00+n10 —1
B = N+Z Z (]—L—l)nl]+n00+n10+21(n01+n1])+1
i=2 j=i-1
C=n0+zj(n0j+n1j)+z Z (]—l—l)nu
= i=2j=i—1
z z nij,n =Zn0j'n10 =anj
i=2 j=i-1 =0 j=0

and n;;, the observed number of trans1t10ns from state i to state j in N¢.

For comparison, we followed the same simulation procedure that was

outlined by Chowdhury and Mukherjee (2013) and simulated 1000

times to get RMSE. Estimated values of our maximum likelihood

estimator are given in Table 3

Table 3: Estimates of p using maximum likelihood estimator with
RMSE (in parenthesis) for sample sizes (30, 50, 100)

Sample size

True . Estimator of Chowdhury and
value Our estimator .

of p Mukherjee

30 50 100 30 50 100

p=05 0.5006402 0.5001845 0.5001406 0.4823 0.4941 0.4956
RMSE | (0.008063451) | (0.006416161) | (0.004554429) | (0.0234151) | (0.0169929) | (0.0102145)
p=0.7 0.7008962 0.7002579 0.7001966 0.6739 0.6812 0.6998
RMSE | (0.011288959) | (0.008982706) | (0.006376323) | (0.0314587) | (0.0214703) | (0.0154366)
p=09 0.9011529 0.9003322 0.9002534 0.8688 0.8809 0.8912
RMSE | (0.01451443) | (0.011549211) | (0.008198148) | (0.0245871) | (0.0124587) | (0.0095487)
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Here,

we compared our MLE of p with the MLE of p by Basak and

Choudhury (2018). They obtained the MLE of p as given below.

. _Jni+ay+2n)(y+ny) —n,
PuL = 20y + 2n)

where y = Z?jl X;, n the observed number of M/M/1 queues, x; non-empty

queue size of n, observations. We adhered strictly to the technique defined
by Basak and Choudhury (2018). The simulation procedure was repeated
5000 times to MSE, MSE as carried out by Basak and Choudhury (2018).

Table 4: Estimates of p using maximum likelihood estimator with MSE

(in parenthesis) for sample sizes (30, 50, 100) by(14)

Sample size

True . Estimator of Basak and
value Our Estimator

of Choudhury

P 30 50 100 30 50 100

li 0.5 0.5002356 | 0.5000227 | 0.5000617 | 0.480953 | 0.492379 | 0.496542
IT/ISIE (0.000103) | (0.0000405) | (0.0000199) | (0.008773) | (0.00295) | (0.001402)
fi 0.8 0.800377 0.800036 0.8000985 | 0.789904 | 0.795285 | 0.797708
IT/IS-E (0.000263) | (0.000104) | (0.0000510) | (0.00229) | (0.000815) | (0.000350)
li 0.9 0.9004245 | 0.900041 0.9001114 | 0.887786 | 0.890558 | 0.892443
l:AS.E) (0.000333) | (0.000131) | (0.0000645) | (0.000698) | (0.000276) | (0.000169)

From Tables 3 and 4, it is evident that our maximum likelihood
estimator provides better estimates compared to those of Chowdhury
and Mukherjee (2013) and Basak and Choudhury (2018). Additionally,
as the sample size increases, the RMSE decreases more significantly
than in Chowdhury and Mukherjee (2013), and the MSE decreases
more substantially than in Basak and Choudhury (2018). Based on
these results we conclude that our maximum likelihood estimator
provides estimates of traffic intensity that are closest to the actual
values, making it superior to those available in the literature. This
highlights a key advantage of our estimator.

10. Conclusions

We presented two estimators for the traffic intensity in an M/M/1
queuing system: Two of the estimators include an unbiased estimator
and a maximum likelihood (ML) estimator. It can be seen that the
unbiased estimator possesses some attributes that are characteristic
of a good estimator. A confidence interval was built, and the most
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powerful critical region for the estimator of traffic intensity was
developed. The simulation procedure was adopted in order to compare
the newly developed ML estimator of traffic intensity with those
existing in the literature, where it was revealed that the new estimator
performs better than the existing ones.
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